DEVELOPMENT OF A RAPID PROTOTYPING METHODOLOGY FOR WIND TUNNEL TEST MODEL DESIGN

Author(s):  
Bruno Ricardo Massucatto Padilha ◽  
Guilherme Barufaldi ◽  
ROBERTO GIL ANNES DA SILVA
2019 ◽  
Vol 86 ◽  
pp. 430-437 ◽  
Author(s):  
Binbin Lv ◽  
Zhiliang Lu ◽  
Tongqing Guo ◽  
Di Tang ◽  
Li Yu ◽  
...  

2014 ◽  
Vol 986-987 ◽  
pp. 1629-1633
Author(s):  
Zheng Yu Zhang ◽  
Xu Hui Huang ◽  
Jiang Yin ◽  
Han Xuan Lai

Videogrammetric measurement is a research focus for the organizations of wind tunnel test because of its no special requirements on the test model, its key techniques for the vibration environment of the high speed wind tunnel are introduced by this paper, such as the solution of exterior parameters with big-angle large overlap, the algorithm of image processing for extracting marked point, the method of camera calibration and wave-front distortion field measurement. The great requirements and application prospects of videogrammetry in wind tunnel fine testing have been demonstrated by several practice experiments, including to measure test model’s angle of attack, dynamic deformations and wave-front distortion field in high speed wind tunnels whose test section size is 2 meters.


2020 ◽  
Author(s):  
P. K. Siddalingappa ◽  
A. P. Dharmendra ◽  
Santosh Hosur ◽  
Prashant Manvi

Aerospace ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 11
Author(s):  
Kazuhisa Chiba ◽  
Tatsuro Komatsu ◽  
Hiroyuki Kato ◽  
Kazuyuki Nakakita

We have developed a remote and precise feedback control system using optical measurement technology to alter the angle of a flap, which is part of a wind tunnel test model, automatically and to earn the aerodynamic data efficiently. To rectify the wasteful circumstance that Japan Aerospace Exploration Agency (JAXA)’s low-turbulence wind tunnel stops ventilation every time to switch model configurations, we repaired hardware for remote operation and generated software for feedback control. As a result, we have accomplished a system that dramatically advances the efficiency of wind tunnel tests. Moreover, the system was able to consider the deformation of the model through optical measurement; the system controlled flap angles with errors less than the minimum resolution of optical measurement equipment. Consequently, we successfully grasped the nonlinearity of three aerodynamic coefficients C L , C D , and C M p that was impossible so far.


2015 ◽  
Vol 799-800 ◽  
pp. 538-542
Author(s):  
Zi Yan Shao ◽  
Wen Jia Chen ◽  
Yong Jin Hu ◽  
Guan Jian Li

The ANSYS Workbench is used in this paper to analyse a kind of wind tunnel test model support platform with 5 degrees of freedom. The driving rod of the pitch motion is chosen as the main research project. By using static structural analysis, modal analysis and harmonic response analysis, a detailed analysis is made on the stress, deformation and frequency of the driving rod, and provides theoretical support for the future research on the stability of the institution.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4633
Author(s):  
Zengshun Chen ◽  
Yemeng Xu ◽  
Hailin Huang ◽  
Kam Tim Tse

Wind tunnel tests have become one of the most effective ways to evaluate aerodynamics and aeroelasticity in bluff bodies. This paper has firstly overviewed the development of conventional wind tunnel test techniques, including high frequency base balance technique, static synchronous multi-pressure sensing system test technique and aeroelastic test, and summarized their advantages and shortcomings. Subsequently, two advanced test approaches, a forced vibration test technique and hybrid aeroelastic- force balance wind tunnel test technique have been comprehensively reviewed. Then the characteristics and calculation procedure of the conventional and advanced wind tunnel test techniques were discussed and summarized. The results indicated that the conventional wind tunnel test techniques ignored the effect of structural oscillation on the measured aerodynamics as the test model is rigid. A forced vibration test can include that effect. Unfortunately, a test model in a forced vibration test cannot respond like a structure in the real world; it only includes the effect of structural oscillation on the surrounding flow and cannot consider the feedback from the surrounding flow to the oscillation test model. A hybrid aeroelastic-pressure/force balance test technique that can observe unsteady aerodynamics of a test model during its aeroelastic oscillation completely takes the effect of structural oscillation into consideration and is, therefore, effective in evaluation of aerodynamics and aeroelasticity in bluff bodies. This paper has not only advanced our understanding for aerodynamics and aeroelasticity in bluff bodies, but also provided a new perspective for advanced wind tunnel test techniques that can be used for fundamental studies and engineering applications.


2013 ◽  
Vol 753-755 ◽  
pp. 1031-1034 ◽  
Author(s):  
Bo Lu ◽  
Bin Bin Lv ◽  
Li Yu ◽  
Hong Tao Guo ◽  
Yu Yan ◽  
...  

To effectively excite the all moving wing flutter model and limiting or quick locking model in case of bigger amplitude of the model, an excitation and limiting and locking device is designed for the high-speed wind tunnel flutter test model. This paper introduces the structure arrangement, control principle and strategy of this device. The wind tunnel flutter test indicates that this device can enhance the SNR of the test data, improve the boundary prediction precision of flutter, prevent the model from entering the flutter divergence state and protect the model and wind tunnel test equipment.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5237
Author(s):  
Shigeo Yoshida

A dynamic stall model for tower shadow effects is developed for downwind turbines. Although Munduate’s model shows good agreement with a 1.0 m wind tunnel test model, two problems exist: (1) it does not express load increase before the entrance of the tower wake, and (2) it uses the empirical tower wake model to determine the wind speed profile behind the tower. The present research solves these problems by combining Moriarty’s tower wake model and the entrance condition of the tower wake. Moriarty’s model does not require any empirical parameter other than tower drag coefficient and it expresses positive wind speed around the tower also. Positive wind speed change is also allowed as the tower wake entrance condition in addition to the negative change observed in the previous model. It demonstrates better agreement with a wind tunnel test and contributes to the accuracy of the fatigue load, as it expresses a slight increase in load around the entrance of the tower wake. Furthermore, the scale effects are also evaluated; lift deviation becomes smaller as the scale increases, i.e., lower rotor speed.


Sign in / Sign up

Export Citation Format

Share Document