Heat Transfer Measurement and Wall-shape Optimization for Combustor Wavy Liner-wall Film-cooling by Steady-state Method Using Two Different Thermal-conductivity Materials

2016 ◽  
Vol 2016 (0) ◽  
pp. E125
Author(s):  
Ryosuke Kondo ◽  
Akira Murata ◽  
Hiroshi Saito ◽  
Hitoshi Taniguchi ◽  
Kaoru Iwamoto ◽  
...  
2017 ◽  
Vol 2017.23 (0) ◽  
pp. 517
Author(s):  
Hitoshi Taniguchi ◽  
Ryosuke Kondo ◽  
Akira Murata ◽  
Hiroshi Saito ◽  
Kaoru Iwamoto ◽  
...  

2004 ◽  
Vol 7 (1) ◽  
pp. 129-138 ◽  
Author(s):  
J. C. Thoméo ◽  
M. V. A. Costa ◽  
J. F. Lopes Filho

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 54 ◽  
Author(s):  
Zipeng Qin ◽  
Gang Li ◽  
Yan Tian ◽  
Yuwei Ma ◽  
Pengfei Shen

The effects of fly ash, sodium carbonate content, foaming temperature and foaming time on foam glass aperture sizes and their distribution were analyzed by the orthogonal experimental design. Results from the steady-state method showed a normal distribution of the number of apertures with change in average aperture, which ranges from 0.1 to 2.0 mm for more than 93% of apertures. For a given porosity, the thermal conductivity decreases with the increase of the aperture size. The apertures in the sample have obvious effects in blocking the heat flow transmission: heat flow is quickly diverted to both sides when encountered with the aperture. When the thickness of the sample is constant, the thermal resistance of the foam glass sample increases with increasing porosity, leading to better thermal insulation. Furthermore, our results suggest that the more evenly distributed and orderly arranged the apertures are in the foam glass material, the larger the thermal resistance of the material and hence, the better the thermal insulation.


2011 ◽  
Vol 23 (No. 4) ◽  
pp. 152-158
Author(s):  
B. Šeruga ◽  
S. Budžaki ◽  
Ž. Ugarčić-Hardi ◽  
M. Šeruga

The objective of this study was to determine the thermal conductivity of “Mlinci” dough T-500 and “Mlinci” dough T-500 with the addition of eggs, wheat germs and wheat bran in the temperature range of 40°C to 70°C. Thermal conductivity was determined using modifications of guarded hot plate steady state method. For all types of dough, thermal conductivity first increased with temperature and then, after reaching maximum values, it decreased. The maximum values for “Mlinci” dough T-500 containing wheat germs and bran were 54°C, and for “Mlinci” dough T-500 with eggs were 58°C. The minimal value of 0.347 ± 0.020 W/mK was determined for “Mlinci” dough T-500 at 39.38°C. The maximum value 0.585 ± 0.023 W/mK was determined for “Mlinci” dough T-500 with wheat bran at 54.39°C. The thermal conductivity of “Mlinci” dough T-500 with the addition of wheat germs and wheat bran was higher in comparison with the basic composition due to the elevated amounts of ash, water, proteins, and porosity, as well as non-homogeneity. Based on the experimental thermal conductivity values of “Mlinci” dough T-500 samples at various temperatures, quadratic polynomial equations were developed. The research results could be used for the modelling of the heat transfer of “Mlinci” dough T-500 during processing.  


2019 ◽  
Vol 52 (12) ◽  
pp. 1572-1576
Author(s):  
S. M. Mahdavi ◽  
M. R. Neyshabouri ◽  
H. Fujimaki

Sign in / Sign up

Export Citation Format

Share Document