Viscoelastic and Dean number effects on the heat and flow characteristics of a serpentine channel

2020 ◽  
Vol 2020 (0) ◽  
pp. 0168
Author(s):  
Yosuke Tanaka ◽  
Kazuya Tatsumi ◽  
Reiko Kuriyama ◽  
Kazuyoshi Nakabe
Author(s):  
Bo-lun Zhang ◽  
Hui-ren Zhu ◽  
Tao Guo ◽  
Chun-yi Yao ◽  
Zhong-yi Fu

Abstract The double turning areas ribbed serpentine channel with lateral outflow is an important structure for designing the internal systems of turbine blade. The current work similarly simplifies the internal channel of the real blade. The Nusselt number and pressure coefficient distribution of the double turning areas ribbed serpentine channel with different outflow ratios are numerically researched under static and rotating conditions. The Realizable k-ε turbulence model with enhanced wall treatment is used in the numerical simulation. The inlet Reynolds number is 11000. The rotation numbers vary from 0 to 0.09. Three outflow ratios are 27%/0%/73%, 27%/49%/24% and 27%/73%/0%, respectively. The rotation radius (R) is 46.4d. The result shows that the Nusselt number distribution of the passage 3 under 27%/49%/24% outflow ratio condition is similar to that under 27%/73%/0% outflow ratio condition. There is a large low Nusselt number area in the passage 3 under Dr = 27%/0%/73% condition. The averaged area Nusselt number ratios on the suction side of the passage 1, passage 2 and passage 3 are higher than that on the pressure side under nonrotating condition. Rotation enhances heat transfer on the suction side of the passage 2, and has a positive effect on pressure side heat transfer of passage 1 and passage 3. The averaged area Nusselt number ratio of passage 3 under 27%/73%/0% outflow ratio condition is higher than that under other outflow ratio conditions. With the rotation number increasing, the pressure coefficient of the complete ribbed serpentine channel gradually increases, and the maximum increase is in the first turning area.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450047 ◽  
Author(s):  
O. ANWAR BEG ◽  
MD. MAINUL HOQUE ◽  
M. WAHIDUZZAMAN ◽  
MD. MAHMUD ALAM ◽  
M. FERDOWS

A computational simulation of magnetohydrodynamic laminar blood flow under pressure gradient through a curved bio-vessel, with circular cross-section is presented. Electrical conductivity and other properties of the biofluid (blood) are assumed to be invariant. A Newtonian viscous flow (Navier–Stokes magnetohydrodynamic) model is employed which is appropriate for large diameter blood vessels, as confirmed in a number of experimental studies. Rheological effects are therefore neglected as these are generally only significant in smaller diameter vessels. Employing a toroidal coordinate system, the steady-state, three-dimensional mass and momentum conservation equations are developed. With appropriate transformations, the transport model is non-dimensionalized and further simplified to a pair of axial and secondary flow momenta equations with the aid of a stream function. The resulting non-linear boundary value problem is solved with an efficient, spectral collocation algorithm, subject to physically appropriate boundary conditions. The influence of magnetic body force parameter, Dean number and vessel curvature on the flow characteristics is examined in detail. For high magnetic parameter and Dean number and low curvature, the axial flow is observed to be displaced toward the center of the vessel with corresponding low fluid particle vorticity strengths. Visualization is achieved with the MAPLE software. The simulations are relevant to cardiovascular biomagnetic flow control.


2000 ◽  
Vol 123 (1) ◽  
pp. 39-50 ◽  
Author(s):  
G. J. Hwang ◽  
S. C. Tzeng ◽  
C. P. Mao ◽  
C. Y. Soong

The present work is concerned with experimental investigation of the convective heat transfer in a radially rotating four-pass serpentine channel. Two types of staggered half-V rib turbulators are considered to examine their effects on heat transfer enhancement. The coolant air is pressurized and pre-cooled to compensate for the low rotating rate and low temperature or density difference in key parameters of thermal and flow characteristics. The geometric dimensions are fixed, whereas the ranges of the thermal and flow parameters in the present measurements are 20,000⩽Re⩽40,000,0⩽Ro⩽0.21, and Gr/Re2∼O10−2. The present results disclose the effects of the pressurized flow, rib arrangement, channel rotation, and centrifugal buoyancy on the local heat transfer in each passage of the channel. Finally, the present data are fitted on correlation equations for evaluation of local heat transfer in the rotating four-pass ribbed channel configurations considered.


Author(s):  
Christopher G. Cvetkovski ◽  
Hoda S. Mozaffari ◽  
Stanley Reitsma ◽  
Tirupati Bolisetti ◽  
David S.-K. Ting

Vertical ground source heat pumps operate by pumping a heat transfer fluid through a pipe buried in the ground. There is a U-Bend at its deepest point to return the fluid to the surface. Incidentally, the U-Bend does more than packing the extensive length of the heat transferring conduit within a single compact borehole. Large flow structures called Dean’s vortices are generated in the bend and these, along with the resulting turbulence produced, are known to significantly enhance the heat transfer processes, and hence, shorten the required length. This study examines the specific roles of Reynolds and Dean numbers on the flow structure and the resulting heat transfer in a pipe with a U-Bend. Water flowing in a pipe without and with heated wall was simulated using FLUENT. The model was verified based on available data in the literature. The efficacy of the local heat transfer rate along the pipe was cast with respect to the subtle changes in the flow characteristics under varying Reynolds number and Dean number.


1996 ◽  
Vol 329 ◽  
pp. 373-388 ◽  
Author(s):  
Hiroshi Ishigaki

When a curved pipe rotates about the centre of curvature, the fluid flowing in it is subjected to both Coriolis and centrifugal forces. Based on the analogy between laminar flows in stationary curved pipes and in orthogonally rotating pipes, the flow characteristics of fully developed laminar flow in rotating curved pipes are made clear and definite by similarity arguments, computational studies and using experimental data. Similarity arguments clarify that the flow characteristics in loosely coiled rotating pipes are governed by three parameters: the Dean number KLC, a body force ratio F and the Rossby number Ro. As the effect of Ro is negligible when Ro is large, computational results are presented for this case first, and then the effect of Ro is studied. Flow structure and friction factor are studied in detail. Variations of flow structure show secondary flow reversal at F ≈ −1, where the two body forces are of the same order but in opposite directions. It is also shown how the Taylor–Proudman effect dominates the flow structure when Ro is small. Computed curves of the friction factor for constant Dean number have their minimum at F ≈ −1. A composite parameter KL is introduced as a convenient governing parameter and used to correlate the characteristics. By applying KL to the analogy formula previously derived for two limiting flows, a semi-empirical formula for the friction factor is presented, which shows good agreement with the experimental data for a wide range of the parameters.


2019 ◽  
Vol 2019.94 (0) ◽  
pp. 613
Author(s):  
Takumi KIKUCHIHARA ◽  
Reiko KURIYAMA ◽  
Kazuya TATSUMI ◽  
Kazuyoshi NAKABE

1991 ◽  
Vol 113 (1) ◽  
pp. 48-55 ◽  
Author(s):  
G. J. Hwang ◽  
Chung-Hsing Chao

A numerical study is made to investigate the forced laminar convection in the hydrodynamically and thermally fully developed region of a curved isothermal square duct. Solutions with one and two pairs of vortices superimposed on the main flow are obtained. In the thermally fully developed region, a three-dimensional energy equation of elliptic type is reduced to a two-dimensional one with an eigenvalue, and the axial diffusion term is considered for a small value of the Peclet number. Flow characteristics for cases of dimensionless radius of curvature β = ∞, 50, 10, and 5 with the square of the Dean number ranging from 0 to 106 in a square duct are studied. In addition, heat transfer characteristics for large dimensionless radii of curvature, Pr=0.7 and 7.0, and Peclet number Pe=∞, 10, 5, and 1 are also examined.


Sign in / Sign up

Export Citation Format

Share Document