Numerical Study on Heat Transfer and Flow Characteristics in Double Turning Areas Ribbed Serpentine Channel With Lateral Outflow

Author(s):  
Bo-lun Zhang ◽  
Hui-ren Zhu ◽  
Tao Guo ◽  
Chun-yi Yao ◽  
Zhong-yi Fu

Abstract The double turning areas ribbed serpentine channel with lateral outflow is an important structure for designing the internal systems of turbine blade. The current work similarly simplifies the internal channel of the real blade. The Nusselt number and pressure coefficient distribution of the double turning areas ribbed serpentine channel with different outflow ratios are numerically researched under static and rotating conditions. The Realizable k-ε turbulence model with enhanced wall treatment is used in the numerical simulation. The inlet Reynolds number is 11000. The rotation numbers vary from 0 to 0.09. Three outflow ratios are 27%/0%/73%, 27%/49%/24% and 27%/73%/0%, respectively. The rotation radius (R) is 46.4d. The result shows that the Nusselt number distribution of the passage 3 under 27%/49%/24% outflow ratio condition is similar to that under 27%/73%/0% outflow ratio condition. There is a large low Nusselt number area in the passage 3 under Dr = 27%/0%/73% condition. The averaged area Nusselt number ratios on the suction side of the passage 1, passage 2 and passage 3 are higher than that on the pressure side under nonrotating condition. Rotation enhances heat transfer on the suction side of the passage 2, and has a positive effect on pressure side heat transfer of passage 1 and passage 3. The averaged area Nusselt number ratio of passage 3 under 27%/73%/0% outflow ratio condition is higher than that under other outflow ratio conditions. With the rotation number increasing, the pressure coefficient of the complete ribbed serpentine channel gradually increases, and the maximum increase is in the first turning area.

2004 ◽  
Vol 128 (2) ◽  
pp. 300-309 ◽  
Author(s):  
P. J. Newton ◽  
G. D. Lock ◽  
S. K. Krishnababu ◽  
H. P. Hodson ◽  
W. N. Dawes ◽  
...  

Local measurements of the heat transfer coefficient and pressure coefficient were conducted on the tip and near tip region of a generic turbine blade in a five-blade linear cascade. Two tip clearance gaps were used: 1.6% and 2.8% chord. Data was obtained at a Reynolds number of 2.3×105 based on exit velocity and chord. Three different tip geometries were investigated: A flat (plain) tip, a suction-side squealer, and a cavity squealer. The experiments reveal that the flow through the plain gap is dominated by flow separation at the pressure-side edge and that the highest levels of heat transfer are located where the flow reattaches on the tip surface. High heat transfer is also measured at locations where the tip-leakage vortex has impinged onto the suction surface of the aerofoil. The experiments are supported by flow visualization computed using the CFX CFD code which has provided insight into the fluid dynamics within the gap. The suction-side and cavity squealers are shown to reduce the heat transfer in the gap but high levels of heat transfer are associated with locations of impingement, identified using the flow visualization and aerodynamic data. Film cooling is introduced on the plain tip at locations near the pressure-side edge within the separated region and a net heat flux reduction analysis is used to quantify the performance of the successful cooling design.


Author(s):  
Sarwesh Parbat ◽  
Li Yang ◽  
Minking Chyu ◽  
Sin Chien Siw ◽  
Ching-Pang Lee

Abstract The strive to achieve increasingly higher efficiencies in gas turbine power generation has led to a continued rise in the turbine inlet temperature. As a result, novel cooling approaches for gas turbine blades are necessary to maintain them within the material’s thermal mechanical performance envelope. Various internal and external cooling technologies are used in different parts of the blade airfoil to provide the desired levels of cooling. Among the different regions of the blade profile, the trailing edge (TE) presents additional cooling challenges due to the thin cross section and high thermal loads. In this study, a new wavy geometry for the TE has been proposed and analyzed using steady state numerical simulations. The wavy TE structure resembled a sinusoidal wave running along the span of the blade. The troughs on both pressure side and suction side contained the coolant exit slots. As a result, consecutive coolant exit slots provided an alternating discharge between the suction side and the pressure side of the blade. Steady state conjugate heat transfer simulations were carried out using CFX solver for four coolant to mainstream mass flow ratios of 0.45%, 1%, 1.5% and 3%. The temperature distribution and film cooling effectiveness in the TE region were compared to two conventional geometries, pressure side cutback and centerline ejection which are widely used in vanes and blades for both land-based and aviation gas turbine engines. Unstructured mesh was generated for both fluid and solid domains and interfaces were defined between the two domains. For turbulence closer, SST-kω model was used. The wall y+ was maintained < 1 by using inflation layers at all the solid fluid interfaces. The numerical results depicted that the alternating discharge from the wavy TE was able to form protective film coverage on both the pressure and suction side of the blade. As a result, significant reduction in the TE metal was observed which was up to 14% lower in volume averaged temperature in the TE region when compared to the two baseline conventional configurations.


Author(s):  
P. J. Newton ◽  
S. K. Krishnababu ◽  
G. D. Lock ◽  
H. P. Hodson ◽  
W. N. Dawes ◽  
...  

Local measurements of the heat transfer coefficient and pressure coefficient were conducted on the tip and near tip region of a generic turbine blade in a five-blade linear cascade. Two tip clearance gaps were used: 1.6% and 2.8% chord. Data was obtained at a Reynolds number of 2.3 × 105 based on exit velocity and chord. Three different tip geometries were investigated: a flat (plain) tip, a suction-side squealer, and a cavity squealer. The experiments reveal that the flow through the plain gap is dominated by flow separation at the pressure-side edge and that the highest levels of heat transfer are located where the flow reattaches on the tip surface. High heat transfer is also measured at locations where the tip-leakage vortex has impinged onto the suction surface of the aerofoil. The experiments are supported by flow visualisation computed using the CFX CFD code which has provided insight into the fluid dynamics within the gap. The suction-side and cavity squealers are shown to reduce the heat transfer in the gap but high levels of heat transfer are associated with locations of impingement, identified using the flow visualisation and aerodynamic data. Film cooling is introduced on the plain tip at locations near the pressure-side edge within the separated region and a net heat flux reduction analysis is used to quantify the performance of the successful cooling design.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Wei Du ◽  
Lei Luo ◽  
Songtao Wang ◽  
Jian Liu ◽  
Bengt Sunden

Abstract Heat transfer characteristics in a latticework duct with various sidewalls are numerically investigated. The crossing angle is 90 deg and the number of subchannels is eleven on both the pressure side and suction side for each latticework duct. The thickness of the ribs is 8 mm and the distance between adjacent ribs is 24 mm. The investigation is conducted for various Reynolds numbers (11,000 to 55,000) and six different sidewalls. Flow structure, pressure drop, and heat transfer characteristics are analyzed. Results revealed that the sidewall has significant effects on heat transfer and flow structure. The triangle-shaped sidewall provides the highest Nusselt number accompanied by the highest friction factor. The sidewall with a slot shows the lowest friction factor and Nusselt number. An increased slot width decreased the Nusselt number and friction factor simultaneously.


2020 ◽  
Vol 10 (5) ◽  
pp. 610-621
Author(s):  
Taliv Hussain ◽  
Mohammad T. Javed

Introduction: A numerical study is performed in which the friction factor and forced convection heat transfer is studied for Al2O3 nanoparticle dispersed in water as a base fluid. Methods: Four concentrations of nanofluids in the range of 0-2.5 vol% have been simulated. The Reynolds Number is varied in the range of 100-500 by varying inlet velocity. Cross flow of air is assumed over the pipe with air velocity of 2.2 m/s. Results: The results depict that the friction factor decreases with an increase in flow rate and increases with increase in volume concentration. The maximum deviation for friction factor obtained by simulation from that obtained using Darcy’s relation is about 21.5% for water. Nusselt number increases with increase in Reynolds Number and nanofluid volume concentration with a maximum of 7653.68 W/m2 at a nanoparticle concentration of 2.5% and Reynolds Number of 500. Heat transfer rate enhancement of upto 13.6% is obtained as compared to pure water. The maximum increase in Nusselt Number is about 13.07% for a nanoparticle concentration of 2.5%. Conclusion: The simulation results are compared with established relations obtained by other researchers and there is a good agreement in terms of trends obtained. The deviations from established relations are also depicted.


Author(s):  
Motohiko Nohmi ◽  
Akira Goto ◽  
Yuka Iga ◽  
Toshiaki Ikohagi

A low specific speed centrifugal pump was constructed to measure cavitation flow characteristics. Pressure distribution over blade surfaces and wall static pressure were measured dynamically and cavitation behavior were photographed by using high speed video and a digital camera. Cavitation flow inside the impeller was computed by commercial CFD code CFX-TASCflow. Head drop characteristics were measured in detail and compared to CFD results. In the case of the best efficiency point flow, bubble cavitation increases along the suction side while decreasing NPSH. When bubble cavitation reaches the throat, another cavity appears on pressure side and the head breakdown occurs steeply. At the high flow rate, cavitation bubbles appear incipiently at the throat on pressure side and head drops gradually. At best efficiency point flow, cavitation phenomena are well captured by CFD.


2011 ◽  
Vol 383-390 ◽  
pp. 3963-3968
Author(s):  
Shao Hua Li ◽  
Li Mei Du ◽  
Wen Hua Dong ◽  
Ling Zhang

In this paper, a numerical simulation was performed to investigate heat transferring characteristics on the leading edge of a blade with three rows of holes of film-cooling using Realizable k- model. Three rows of holes were located on the suction side leading edge stagnation line and the pressure surface. The difference of the cooling efficiency and the heat transfer of the three rows of holes on the suction side and pressure side were analyzed; the heat transfer and film cooling effectiveness distribution in the region of leading edge are expounded under different momentum rations.The results show that under the same condition, the cooling effectiveness on the pressure side is more obvious than the suction side, but the heat transfer is better on the suction side than the pressure side. The stronger momentum rations are more effective cooling than the heat transfer system.


Author(s):  
H. Iacovides ◽  
B. E. Launder

This work is concerned with fully-developed constant-density turbulent flow through rectangular straight ducts rotating in an orthogonal mode. Ducts of both square and 2:1 aspect ratio cross-sections have been examined. For the square duct, predictions have been performed for Reynolds numbers of 33,500 and 97,000 and for the 2:1 aspect ratio duct the computations were carried out for a Reynolds number of 33,500. Values of the inverse Rossby number (Ro = ΩD/Wb) ranged from 0.005 to 0.2. Except in the immediate vicinity of the wall, the standard high-Reynolds-number version of the k-ε model is used to account for the effects of turbulence. Across the near-wall sublayer the damping of turbulence is modelled through a low-Reynolds-number one-equation model. Low rotational speeds cause the formation of a pair of symmetric streamwise vortices. At higher rotational speeds, flow instabilities on the pressure side lead to transition to a more complex four-vortex structure. The transition point depends on both the cross-sectional geometry and the flow Reynolds number. Moreover, over a range of Rossby number, either two- or four-vortex solutions are possible depending upon initial conditions. The rotation leads to significant differences between the values of friction factor and Nusselt number on the suction and pressure surfaces of the duct. The degree of heat transfer augmentation on the pressure side is found to depend on the Reynolds number as well as on Rossby number. In contrast, heat-transfer attenuation on the suction side is only Rossby-number dependent.


1991 ◽  
Vol 113 (3) ◽  
pp. 331-338 ◽  
Author(s):  
H. Iacovides ◽  
B. E. Launder

This work is concerned with fully developed constant-density turbulent flow through rectangular straight ducts rotating in an orthogonal mode. Ducts of both square and 2:1 aspect ratio cross sections have been examined. For the square duct, predictions have been performed for Reynolds numbers of 33,500 and 97,000 and for the 2:1 aspect ratio duct the computations were carried out for a Reynolds number of 33,500. Values of the inverse Rossby number (Ro = ΩD/Wb) ranged from 0.005 to 0.2. Except in the immediate vicinity of the wall, the standard high-Reynolds-number version of the k–ε model is used to account for the effect of turbulence. Across the near-wall sublayer the damping of turbulence is modeled through a low-Reynolds-number one-equation model. Low rotational speeds cause the formation of a pair of symmetric streamwise vortices. At higher rotational speeds, flow instabilities on the pressure side lead to transition to a more complex four-vortex structure. The transition point depends on both the cross-sectional geometry and the flow Reynolds number. Moreover, over a range of Rossby number, either two– or four–vortex solutions are possible depending upon initial conditions. The rotation leads to significant differences between the values of friction factor and Nusselt number on the suction and pressure surfaces of the duct. The degree of heat transfer augmentation on the pressure side is found to depend on the Reynolds number as well as on Rossby number. In contrast, heat transfer attenuation on the suction side is only Rossby-number dependent.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 224-233
Author(s):  
Wei Wang ◽  
Bo Zhang ◽  
Lanhua Cui ◽  
Hongwei Zheng ◽  
Jiří Jaromír Klemeš ◽  
...  

Abstract This study aims to investigate heat transfer and flow characteristics of ethylene glycol/water (EGW) and CuO–EGW nanofluids in circular tubes with and without trapezoid ribs. Nusselt number and friction factor in tubes with trapezoid ribs are analysed under a constant heat flux by changing rib bottom angles. This study compares the convective heat transfer coefficients of 6 vol.% CuO–EGW nanofluid and base fluid. It is found that under a constant Reynolds number, the Nusselt number and friction factor for CuO–EGW nanofluid and base fluid increase with an increase in the inclination angle. The Nusselt number for the CuO–EGW nanofluid in the tube with 75° rib bottom angle averagely increases by 135.8% compared to that in the smooth tube, and the performance evaluation criterion is 1.64.


Sign in / Sign up

Export Citation Format

Share Document