High Temperature Anisotropic Elastic Constants of Forged TiAl Alloys by Resonant Ultrasound Spectroscopy

2019 ◽  
Vol 2019.54 (0) ◽  
pp. 137
Author(s):  
Daiki KOBAYASHI ◽  
Kanta ADACHI ◽  
Hiroyuki WAKI
2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
G. Li ◽  
J. R. Gladden

The measurement of elastic constants plays an important role in condensed matter physics and materials characterization. This paper presents the resonant ultrasound spectroscopy (RUS) method for the determination of elastic constants in a single crystal or amorphous solid. In RUS, the measured resonance spectrum of a properly prepared sample and other information such as geometry, density, and initial estimated elastic constants are used to determine the elastic constants of the material. We briefly present the theoretical background and applications to specific materials; however, the focus of this review is on the technical applications of RUS, especially those for high-temperature measurements.


2002 ◽  
Vol 66 (11) ◽  
pp. 1073-1077
Author(s):  
Masakazu Tane ◽  
Tetsu Ichitsubo ◽  
Masahiko Hirao ◽  
Tomohiro Morishita ◽  
Hideo Nakajima

2005 ◽  
Vol 875 ◽  
Author(s):  
Hirotsugu Ogi ◽  
Nobutomo Nakamura ◽  
Hiroshi Tanei ◽  
Masahiko Hirao

AbstractThis paper presents two advanced acoustic methods for the determination of anisotropic elastic constants of deposited thin films. They are resonant-ultrasound spectroscopy with laser-Doppler interferometry (RUS/Laser method) and picosecond-laser ultrasound method. Deposited thin films usually exhibit elastic anisotropy between the film-growth direction and an in-plane direction, and they show five independent elastic constants denoted by C11,C33,C44,C66 and C13 when the x3 axis is set along the film-thickness direction. The former method determines four moduli except C44, the out-of-plane shear modulus, through free-vibration resonance frequencies of the film/substrate specimen. This method is applicable to thin films thicker than about 200 nm. The latter determines C33, the out-of-plane modulus, accurately bymeasuring the round-trip time of the longitudinal wave traveling along the film-thickness direction. This method is applicable to thin films thicker than about 20 nm. Thus, combination of these two methods allows us to discuss the elastic anisotropy of thin films. The results for Co/Pt superlattice thin film and copper thin film are presented.


Sign in / Sign up

Export Citation Format

Share Document