101 Mechanical Properties of Electron Beam Welded Copper Alloy Casting and Stainless Cast Steel Welded Joints

2015 ◽  
Vol 2015 (0) ◽  
pp. 4-5
Author(s):  
Tetsu MUNAKATA ◽  
Fumio SHIBATA
2021 ◽  
Vol 225 ◽  
pp. 01011
Author(s):  
Marina Panchenko ◽  
Eugeny Melnikov ◽  
Valentina Moskvina ◽  
Sergey Astafurov ◽  
Galina Maier ◽  
...  

A comparative study of the mechanical properties, fracture mechanisms and hydrogen embrittlement peculiarities was carried out using the specimens of austenitic CrNi steel produced by two different methods: wire-feed electron beam additive manufacturing and conventional casting followed by solid-solution treatment. Hydrogen-induced reduction of ductility and the increase in the yield strength are observed in steel specimens produced by both methods. Despite hydrogen embrittlement index is comparable in them, the increase in the yield strength after hydrogen-charging is different: 25 MPa for cast steel and 175 MPa for additively manufactured steel. This difference is associated with the peculiarities of phase composition and phase distribution in steels produced by different methods.


Author(s):  
Xilong Zhao ◽  
Xinhong Lu ◽  
Kun Wang ◽  
Feng He

Electron beam welding (EBW) is a fusion joining process particularly suitable for welding titanium plates. In the present work, 2.5 mm thickness Ti6Al4V titanium alloy plates were butt-welded together with backing plates by EBW. The detailed procedures of experiments were used to investigate the microstructure and mechanical properties of welded joints. The optimum welding speed was determined by microstructure examinations, microhardness tests, X-Ray diffraction tests, shear punch tests (SPT) and stress simulation calculations. The results showed that all microstructure of welded metal (WM) was martensite phase under the different welding speeds. In the heat-affected zone (HAZ), the martensite phase gradually evolved to be small and equiaxed. It can be seen that the microstructure of each region in welded joints did not change significantly. When the welding speed is between 8 mm/s and 14 mm/s, it can be seen from the macroscopic appearance of the joints that there was no utterly fused penetration between the butt plate and substrate. Finite element simulation was carried out for the no-penetration depth under different welding conditions, and it was found that the stress suffered by the small no-penetration depth was the smallest. Using different welding parameters shows that the engineering stress in WM was higher than other areas, and BM was the lowest. As welding speed increases from 8 mm/s to 14 mm/s, the variation of microhardness distribution was not evident.


2020 ◽  
Vol 30 (3) ◽  
pp. 678-687
Author(s):  
Cai-yan DENG ◽  
Ce LIU ◽  
Bao-ming GONG ◽  
Cheng-ze ZHANG ◽  
Chang LIU ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2233
Author(s):  
Tatyana Olshanskaya ◽  
Vladimir Belenkiy ◽  
Elena Fedoseeva ◽  
Elena Koleva ◽  
Dmitriy Trushnikov

The application of electron beam sweep makes it possible to carry out multifocal and multi-beam welding, as well as combine the welding process with local heating or subsequent heat treatment, which is important when preparing products from thermally-hardened materials. This paper presents a method of electron beam welding (EBW) with dynamic beam positioning and its experimental-calculation results regarding the formation of structures and properties of heat-resistant steel welded joints (grade of steel 20Cr3MoWV). The application of electron beam oscillations in welding makes it possible to change the shape and dimensions of welding pool. It also affects the crystallization and formation of a primary structure. It has been established that EBW with dynamic beam positioning increases the weld metal residence time and the thermal effect zone above the critical A3 point, increases cooling time and considerably reduces instantaneous cooling rates as compared to welding without beam sweep. Also, the difference between cooling rates in the depth of a welded joint considerably reduces the degree of structural non-uniformity. A bainitic–martensitic structure is formed in the weld metal and the thermal effect zone throughout the whole depth of fusion. As a result of this structure, the level of mechanical properties of a welded joint produced from EBW with dynamic electron beam positioning approaches that of parent metal to a greater extent than in the case of welding by a static beam. As a consequence, welding of heat-resistant steels reduces the degree of non-uniformity of mechanical properties in the depth of welded joints, as well as decreases the level of hardening of a welded joint in relation to parent metal.


2018 ◽  
Vol 26 ◽  
pp. 34
Author(s):  
Umeda Takateru

The regulation for the lead discharge in the environment was strengthened, in Japan, the standards 0.01 mg/I or less has been in force from April 2003. In order to meet the new standard, two technologies for reduction of lead dissolution into the drinking water have been developed in Japan; substitution of lead free copper alloys for lead bearing bronze (JIS-CAC406) and introduction of surface treatment technology. This technological trend was shortly reviewed. For development of lead free copper alloy casting, mechanical properties, castability and machinability of various lead free alloy castings were examined. Trial alloys used were commercially available ones such as the lead free bronze containing Bi, the lead free bronze containing Bi-Se, the lead free bronze containing Bi-Sb and the lead free brass containing Si. Mechanical properties of alloys were dependent on the pouring temperature and castings thickness and were generally less than those of tin bronze castings (JIS-CAC406, Cu-5 wt% Sn-5 wt% Zn-5 wt% Pb). The machinability of the lead free bronze containing Bi and Se was better than that of the lead free bronze castings containing Bi and Bi-Sb. But was still 10 to 15 % less than that of JIS-CAC406. In a lead free alloy substituted by Bi, adjustment of tin, zinc and bismuth contents was attempted and in the Bi-Se system, the adequate adjustment, for bismuth and selenium contents and also for tin, zinc and bismuth contents, was attempted. New alloy in which the mechanical properties sufficiently satisfy the standard for JIS-CAC406 is developed.


Sign in / Sign up

Export Citation Format

Share Document