Effect of Voids on Thermal Fatigue Reliability of Lead Free Solder Joint

2002 ◽  
Vol 2002 (0) ◽  
pp. 223-224
Author(s):  
Doseop KIM ◽  
Qiang YU ◽  
Tadahiro SHIBUTANI ◽  
Haeki NAM ◽  
Masaki SHIRATORI ◽  
...  
2007 ◽  
Vol 345-346 ◽  
pp. 1393-1396
Author(s):  
Ouk Sub Lee ◽  
Man Jae Hur ◽  
Yeon Chang Park ◽  
Dong Hyeok Kim

It is well-known that the vibration significantly affect the life of solder joint. In this paper, the effects of the vibration on the failure probability of the solder joint are studied by using the failure probability models such as the First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM). The accuracies of the results are estimated by a help of the Monte Carlo Simulation (MCS). The reliability of the lead and the lead-free solder joint was also evaluated. The reliability of lead-free solder joint is found to be higher than that of lead solder joint.


2007 ◽  
Vol 353-358 ◽  
pp. 2573-2576 ◽  
Author(s):  
Fang Juan Qi ◽  
Li Xing Huo ◽  
Ya Ping Ding ◽  
Zhan Lai Ding

In recent years, several electronics manufacturers have been working toward introducing lead-free solder and halogen-free print circuit boards (PCBs) into their products. The key drivers for the change in materials have been the impending environmental legislations, particularly in Europe and Japan as well as the market appeal of ‘green’ products. The reliability of the new materials is an important determinant of the pace of adoption. Fairly extensive mechanical fatigue reliability data is also available for micro-joining soldered joint such as Ball Grid Array (BGA) with tin-lead solder. However, similar data is not available for BGAs assembled with lead-free solder. Mechanical reliability is a critical indicator for phone and BGA survival during repeated keypress, and to some extent during drop. In this paper, the mechanical bend fatigue of BGAs with tin-lead and lead-free solders on halogen-free substrates are examined respectively. A tin-silver-copper alloy was used as lead-free solder due to its increasing acceptance, and the results were compared to those from samples assembled with Sn63Pb37 solder. The reliability was examined at both low cycle and high cycle fatigue. Results show that the mechanical bend fatigue reliability of BGA assemblies with lead-free solder is higher than that of BGA assembly with tin-lead solder. Cross section and failure analysis indicated two distinct failure modes - solder joint and PCB failure. A 3-D parametric finite element model was developed to correlate the local PCB strains and solder joint plastic strains with the fatigue life of the assembly. The intermetallic compoumd (IMC) of micro-joining joint interface was analysised in the future in order to study on the effect of IMC on the reliability.


2008 ◽  
Vol 72 (3) ◽  
pp. 244-248 ◽  
Author(s):  
Tomotake Tohei ◽  
Ikuo Shohji ◽  
Keisuke Yoshizawa ◽  
Masaharu Nishimoto ◽  
Takayuki Kawano ◽  
...  

2008 ◽  
Vol 385-387 ◽  
pp. 433-436 ◽  
Author(s):  
Ikuo Shohji ◽  
Tomotake Tohei ◽  
Keisuke Yoshizawa ◽  
Masaharu Nishimoto ◽  
Yasushi Ogawa ◽  
...  

Accelerated thermal cycling (ATC) tests were conducted to investigate an effect of thermal cycle conditions on thermal fatigue life of a chip size package (CSP) lead-free solder joint. A ternary Sn-Ag-Cu alloy was used as a lead-free solder material. For frequency of thermal cycle (1~3 cycles/h) and maximum (388~423 K) and minimum (223~273 K) temperatures investigated, the effects of them on thermal fatigue life of the solder joint were slight. On the contrary, correlation was recognized between temperature amplitude and thermal fatigue life of the solder joint. The thermal fatigue life increased with decreasing temperature amplitude. The relationship obeyed the Coffin-Manson’s type equation.


2011 ◽  
Vol 264-265 ◽  
pp. 1660-1665
Author(s):  
Yong Cheng Lin ◽  
Yu Chi Xia

More and more solder joints in circuit boards and electronic products are changing to lead free solder, placing an emphasis on lead free solder joint reliability. Solder joint fatigue failure is a serious reliability concern in area array technologies. In this study, the effects of substrate materials on the solder joint thermal fatigue life were investigated by finite element model. Accelerated temperature cycling loading was imposed to evaluate the reliability of solder joints. The thermal strain/stress in solder joints of flip chip assemblies with different substrates was compared, and the fatigue life of solder joints were evaluated by Darveaux’s crack initiation and growth model. The results show the mechanisms of substrate flexibility on improving solder joint thermal fatigue.


Sign in / Sign up

Export Citation Format

Share Document