scholarly journals Two-Dimensional Elasticity in Aeolotropic Plate Solved Only by Harmonic Function : Part 2, Stress Concentration Problems Produced by Square Hole

1957 ◽  
Vol 23 (131) ◽  
pp. 455-463
Author(s):  
Yoitiro TAKEUTI
1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


1950 ◽  
Vol 17 (3) ◽  
pp. 233-248
Author(s):  
L. F. Coffin

Abstract The mechanism of flow and fracture of a gray cast iron can be understood if one considers the microstructure to consist of a ductile structure with a random dispersion of cracks due to the graphite flakes following the concept of Fisher. A notch effective stress can be calculated for a critically situated crack by a knowledge of the external stresses, a plastic stress-concentration factor of 3, and a residual tensile stress at the sharp edge of the crack, based upon either the “maximum-shear” theory or the “distortion-energy” theory. This allows the formulation of generalized plastic stress-strain relationships and renders gray cast iron applicable to the many known solutions for plastic flow of ductile metals. Fracture in the region of tension-tension and tension-compression can be evaluated by a similar analysis, using the same stress-concentration factor and the same residual stress. A combined stress-testing program is described wherein thin-walled cast-iron tubes are subjected to two-dimensional states of combined stress covering the complete two-dimensional field.


1962 ◽  
Vol 66 (617) ◽  
pp. 320-322 ◽  
Author(s):  
J. R. Dixon

SummaryTwo-dimensional photoelastic tests have been carried out on uni-axially loaded flat-plate specimens with two collinear edge slits, to investigate the effect of finite plate width on the elastic stress distribution. It was found that the effect of slitlength/ plate-width ratio on the elastic stress concentration at the end of the edge slit of length l was virtually the same as that for a central slit of length 2l in a plate of the same width, and could be adequately expressed by existing theories.


2012 ◽  
Vol 236-237 ◽  
pp. 52-54
Author(s):  
Lin Yang ◽  
Qin He ◽  
Shu Yong Zhou ◽  
Wu Li

The fracture behavior of materials and structures are always caused by stress concentration near the defects in materials. This article describes the complex potential method for solving plane problems of quasicrystalline materials with defects. In order to prove effectiveness and success of the method, an example is given, and the results have very important significance in studying two-dimensional quasicrystals.


1959 ◽  
Vol 63 (585) ◽  
pp. 549-551 ◽  
Author(s):  
I. M. Allison

Two-Dimensional Stress concentration factors may be obtained more quickly and simply than the corresponding three-dimensional factors, either by experiment or mathematical analysis. It would be convenient to obtain information, for varying geometry in the two-dimensional case of a particular type of stress raiser, e.g. a shoulder, groove or hole, and use this either to predict the three-dimensional stress concentration factors or to extend the range of existing three-dimensional results. Clearly a comparison is only possible if the three-dimensional stress raiser embodies a plane of symmetry (which gives the geometry of the similar two-dimensional stress raiser), and if the loading conditions can be reproduced in both the two- and three-dimensional cases. The latter requirement restricts the correlation to the stress concentration factors obtained in tension and in bending. The three-dimensional torsional loading system has no plane of symmetry which can be simulated in two dimensions.


Sign in / Sign up

Export Citation Format

Share Document