scholarly journals Unsteady Characteristics of the Oscillating Aerofoils of Arbitrary Section in Cascade : 3rd Report, Aerofoil Section of Large Camber and Thickness

1978 ◽  
Vol 44 (381) ◽  
pp. 1552-1560
Author(s):  
Tetsuo NISHIYAMA ◽  
Minoru MURATA
2021 ◽  
Vol 11 (15) ◽  
pp. 6972
Author(s):  
Lihua Cui ◽  
Fei Ma ◽  
Tengfei Cai

The cavitation phenomenon of the self-resonating waterjet for the modulation of erosion characteristics is investigated in this paper. A three-dimensional computational fluid dynamics (CFD) model was developed to analyze the unsteady characteristics of the self-resonating jet. The numerical model employs the mixture two-phase model, coupling the realizable turbulence model and Schnerr–Sauer cavitation model. Collected data from experimental tests were used to validate the model. Results of numerical simulations and experimental data frequency bands obtained by the Fast Fourier transform (FFT) method were in very good agreement. For better understanding the physical phenomena, the velocity, the pressure distributions, and the cavitation characteristics were investigated. The obtained results show that the sudden change of the flow velocity at the outlet of the nozzle leads to the forms of the low-pressure zone. When the pressure at the low-pressure zone is lower than the vapor pressure, the cavitation occurs. The flow field structure of the waterjet can be directly perceived through simulation, which can provide theoretical support for realizing the modulation of the erosion characteristics, optimizing nozzle structure.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550013 ◽  
Author(s):  
Siu-Siu Guo ◽  
Dongfang Wang ◽  
Zishun Liu

The concept of structural intensity (SI) is extended to the random domain by introducing a physical quantity denominated random structural intensity (RSI). This quantity is formulated for mechanical systems whose dynamical responses are stochastic due to random excitations. In order to fully characterize the stochastic behavior of a system under random loadings, it is imperative to obtain the probability density function (PDF) of RSI. Based on the elastic theory and the definition of SI, RSI is expressed as functions of system responses. In general, the PDF of system responses is governed by Fokker–Planck–Kolmogorov (FPK) equation under the assumption that random dynamic loadings are idealized as white noise excitations. Therefore, the PDF of RSI is derived with the joint PDF of system responses. In the present study, four demonstrating cases of beams and plates under separately concentrated and uniform random loadings are studied to investigate the properties of RSI. Stationary and non-stationary PDFs of RSI at arbitrary section of beam and plate are obtained. Numerical results show that the PDF of RSI is transient at early stage of stationary loading and then converges to the exact stationary ones as time increases. With the obtained PDFs of RSI, energy transmission path over the beam and plate can be determined, which is guided from the locations with lower probabilities of RSI to the ones with higher probabilities of RSI. Furthermore, virtual energy flow sinks on the plate and beam can be found, which are identified by the locations with the maximum probabilities of RSI.


Author(s):  
Shaojun Wang ◽  
Xiaoying Tang ◽  
Houde Yu ◽  
Yaozhou Qian ◽  
Jun Cheng ◽  
...  

Responding to complexity and particularity welding on the geometry of TKY tubular node, this paper constructs mathematical model of tubular joint weld of arbitrary section by simplifying the geometry structure, and draws welded joints and ultrasonic sound beam lines based on the actual specifications in order to solve the problems of low efficiency, positioning difficulty, missing inspection and etc. The computeraided simulation technology can realize the visualization in the beam coverage model of welded joints, which can commendably guide the design of ultrasonic phased array inspection and overcome the blindness of the instrument detection parameters, thus improving the effectiveness and pertinence of the actual detection. Study shows that it is beneficial to enhance the effectiveness of the detection tubular joint weld by employment of Visual beam and ultrasonic phased array technology.


2021 ◽  
Author(s):  
Lei Xie ◽  
Ruonan Wang ◽  
Guang Liu ◽  
Qiang Du ◽  
Zengyan Lian

Sign in / Sign up

Export Citation Format

Share Document