scholarly journals An Efficient Calculation Method for Numerical Solutions of Elastoplastic Finite Element Analysis. A Triple-Tandem-Type Substructuring Method Using Both Copy Process and Parallel Calculation.

1996 ◽  
Vol 62 (594) ◽  
pp. 421-429 ◽  
Author(s):  
Naoki ASANO ◽  
Hirofumi NOZAWA ◽  
Jin NISHIHARA
Author(s):  
Hubert Lejeune ◽  
Yann Ton That

The european standard EN1591-1 [1], initially published in 2001, defines a calculation method for bolted gasketed circular flanges, alternative to the TAYLOR-FORGE method, used as the basic method in most codes. In 2007, a new part, XP CEN/TS 1591-3 [2], has been added to the EN1591 series. This technical specification enables to take into account the Metal to Metal Contact (MMC), appearing inside the bolt circle on some assemblies. Due to a lack of industrial feedback and detailed validation, this document has not been raised to the standard status. In that context, under the request of its Pressure Vessel and Piping commission, CETIM has performed a study comparing this calculation method to Finite Element Analysis (FEA) on several industrial configurations. After a description of the XP CEN/TS 1591-3 calculation method, the major results obtained for spiral wound gasketed joints where MMC appears between centering ring and flange facing are presented and compared with FEA results. Moreover, results obtained with other classical analytical calculation methods as TAYLOR FORGE and EN1591-1 on the same Bolted Flange Connections (BFC) configuration are also analysed and compared to XP CEN/TS 1591-3 results.


2012 ◽  
Vol 525-526 ◽  
pp. 93-96
Author(s):  
Xue Cheng Ping ◽  
Lin Leng ◽  
Si Hai Wu

A super wedge tip element for application to a bi-material wedge is develop utilizing the thermo-mechanical stress and displacement field solutions in which the singular parts are numerical solutions. Singular stresses near apex of an arbitrary bi-material wedge under mechanical and thermal loading can be obtained from the coupling between the super wedge tip element and conventional finite elements. The validity of this novel finite element method is established through existing asymptotic solutions and conventional detailed finite element analysis.


2012 ◽  
Vol 09 (01) ◽  
pp. 1240008 ◽  
Author(s):  
FENGZHI LI ◽  
QIANG TU

The scaled boundary finite element method (SBFEM) is used to solve the seepage problems with multi-material regions. Two models of dam base with waterproof screen and dam body with the regions of two materials are established. The numerical solutions are obtained and then compared with the analytical results or numerical solutions in the references. The conclusion shows that the SBFEM has more satisfactory accuracy and less data preparation amount.


Sign in / Sign up

Export Citation Format

Share Document