Practical Calculation Method of the Maximum Elastic Displacement of a Blast Door using the Load Distribution Method and Finite Element Analysis

2019 ◽  
Vol 43 (10) ◽  
pp. 737-745
Author(s):  
Kwan Bo Shim ◽  
Taek Sung Lee
2018 ◽  
Vol 10 (6) ◽  
pp. 168781401877525 ◽  
Author(s):  
Shangjun Ma ◽  
Chenhui Zhang ◽  
Tao Zhang ◽  
Geng Liu ◽  
Shumin Liu

In this article, 3D or three-dimensional finite element analysis is used to simulate and evaluate the load distribution characteristics of a planetary roller screw mechanism under thermo-mechanical coupling. The finite element model takes into account the installation modes of the planetary roller screw mechanism, which is verified by comparison with theoretical models for a certain load magnitude in four installation modes. In addition, the effects of the installation mode, load magnitude, and temperature condition on the load distribution are also systematically analyzed. The numerical results reveal a phenomenon of threads separating from the meshing, which indicates that the influence of thermo-mechanical coupling on the load distribution cannot be ignored. Furthermore, the influence of the installation mode on the screw–roller interface is larger than that on the nut–roller interface. Compared with the screw–roller interface, the temperature difference is one of the main conditions affecting the load distribution of the planetary roller screw mechanism and has a significant effect on the nut–roller interface. In addition, the influences of the screw rotational speed and the load magnitude on the load distribution on the screw–roller interface are larger than those on the nut–roller interface for the four installation modes.


Author(s):  
Hubert Lejeune ◽  
Yann Ton That

The european standard EN1591-1 [1], initially published in 2001, defines a calculation method for bolted gasketed circular flanges, alternative to the TAYLOR-FORGE method, used as the basic method in most codes. In 2007, a new part, XP CEN/TS 1591-3 [2], has been added to the EN1591 series. This technical specification enables to take into account the Metal to Metal Contact (MMC), appearing inside the bolt circle on some assemblies. Due to a lack of industrial feedback and detailed validation, this document has not been raised to the standard status. In that context, under the request of its Pressure Vessel and Piping commission, CETIM has performed a study comparing this calculation method to Finite Element Analysis (FEA) on several industrial configurations. After a description of the XP CEN/TS 1591-3 calculation method, the major results obtained for spiral wound gasketed joints where MMC appears between centering ring and flange facing are presented and compared with FEA results. Moreover, results obtained with other classical analytical calculation methods as TAYLOR FORGE and EN1591-1 on the same Bolted Flange Connections (BFC) configuration are also analysed and compared to XP CEN/TS 1591-3 results.


2013 ◽  
Vol 23 (3) ◽  
pp. 8400705-8400705 ◽  
Author(s):  
Tiening Wang ◽  
Luisa Chiesa ◽  
Makoto Takayasu

Currently, very few experimental results describing the behavior of Nb3Sn subcables under transverse load are available. Those results are of importance for predicting how a full-sized cable-in-conduit conductor behaves during operations. Current experimental devices used to study the effect of transverse load on the electrical performance of cables utilize concave plates to apply mechanical loads and contain the sample and subject it to mechanical loads that mimic the electromagnetic loads of full-sized cables during operation. From finite element analysis, it is found that the strain state in the strands of a triplet is greatly affected by the shape of the pressing element contact surface. We will discuss the strain state within the strands from the simulations using two pressing configurations: concave and flat plates. The strain state in each strand in a twisted triplet is investigated by considering two cross-sections of a triplet along the length of the cable. Those results can provide useful information on the electrical performance of each strand based on its location along the axis. It is verified that the load distribution is very different depending on the shape of the pressing plates.


Author(s):  
Bin Cai ◽  
Bo Li ◽  
Feng Fu

Abstract Fire tests and subsequent bending tests of four reinforced concrete (RC) beams were performed. Based on these tests, the post-fire performance of RC beams was further studied using finite-element simulation through reasonable selection of suitable thermal and thermodynamic parameters of steel and concrete materials. A thermodynamic model of RC beams with three sides under fire was built using finite-element analysis (FEA) software ABAQUS. The FEA model was validated with the results of fire tests. Different factors were taken into account for further parametric studies in fire using the propsed FE model. The results show that the main factors affecting the fire resistance of the beams are the thickness of the concrete cover, reinforcement ratio of longitudinal steel, the fire exposure time and the fire exposure sides. Based on the strength reduction formula at high temperature of steel and concrete and four test results, an improved section method was proposed to develop a calculation formula to calculate the flexural capacity of RC beams after fire. The theoretical calculation method proposed in this paper shows good agreement with FEA results, which can be used to calculate the flexural capacity of RC beams after fire.


Author(s):  
Ibai Coria ◽  
Mikel Abasolo ◽  
Josu Aguirrebeitia ◽  
Igor Fernández de Bustos

Uniform bolt load is critical to achieve leak-free service in pressure vessel gasketed joints. In a previous work, the authors presented the tetraparametric assembly method, which enabled to obtain a uniform final load distribution in a one-pass tightening sequence. The accuracy of the method was proved by finite element analysis and experimental tests. However, the tetraparametric assembly method was only developed for one-pass tightening sequences, and in some cases more than one pass can be necessary. Furthermore, the method was only validated for a particular joint geometry. In this sense, the present work generalizes the method for two-pass tightening sequences and studies the range of application.


Sign in / Sign up

Export Citation Format

Share Document