scholarly journals Effect of tip clearance on casing boundary layer in an isolated axial compressor rotor. 2nd report Variation with inlet boundary layer thickness.

1987 ◽  
Vol 53 (487) ◽  
pp. 940-944
Author(s):  
Masahiro INOUE ◽  
Motoo KUROUMARU ◽  
Minoru FUKUHARA ◽  
Tsuyoshi EGUCHI
1986 ◽  
Vol 108 (1) ◽  
pp. 131-137 ◽  
Author(s):  
W. B. Roberts ◽  
G. K. Serovy ◽  
D. M. Sandercock

A model of the spanwise variation of the 3-D flow effects on deviation is proposed for middle-stage rotors and stators. This variation is taken as the difference above or below that predicted by blade element theory at any spanwise location. It was found that the stator variation is strongly affected by the end-wall boundary-layer thickness as well as camber, solidity, and blade channel aspect ratio. Rotor variation was found to depend on end-wall boundary layer thickness and tip clearance normalized by blade span. If these parameters are known or can be calculated, the models provide a reasonable approximation to the spanwise variation of deviation for middle compressor stages operating at low to high subsonic inlet Mach numbers.


1988 ◽  
Vol 110 (4) ◽  
pp. 426-433 ◽  
Author(s):  
W. B. Roberts ◽  
G. K. Serovy ◽  
D. M. Sandercock

Three-dimensional spanwise pressure loss and flow angle deviation variations have been deduced from NASA, university, and industrial sources from middle-stage research compressors operating near design point. These variations are taken as the difference above or below that predicted by blade element theory at any spanwise location. It was observed that the magnitude of the three-dimensional loss and deviation in the endwall regions is affected by hub and casing boundary layer thickness, camber, solidity, and blade channel aspect ratio for stators and rotor hubs. Rotor tip variations were found to depend on casing boundary layer thickness and tip clearance. Simple design point loss models derived from these data can aid in the design of axial compressor middle stages.


Author(s):  
Chenkai Zhang ◽  
Jun Hu ◽  
Zhiqiang Wang

To clearly clarify the effects of different upstream boundary layer thickness and tip clearance size to the detailed tip flow field and flow mechanism, numerical simulations are performed on a subsonic compressor rotor, which is used for low-speed model testing of a rear stage embedded in a modern high-pressure compressor. First, available experimental data are adopted to validate the numerical method. Second, comparisons are made for tip leakage vortex (TLV) structure, the interface of leakage flow/mainflow, endwall loss, isentropic efficiency and pressure-rise among different operating conditions. Then, effects of different clearance sizes and inflow boundary layer thicknesses are investigated. Finally, the self-induced unsteadiness at one near-stall (NS) operating condition is studied for different cases. Results show that the increment of tip clearance size has a deleterious effect on rotor efficiency and pressure-rise performance over the whole operating range, while thickening the inflow boundary layer is almost the same except that its pressure-rise performance will be increased at mass flow rate larger than design operating condition. Self-induced unsteadiness occurs at NS operating conditions, and its appearance largely depends on tip clearance size, while the effect of upstream boundary layer thickness is little.


1986 ◽  
Vol 108 (1) ◽  
pp. 2-6 ◽  
Author(s):  
N. A. Cumpsty

There are few available measurements of the boundary layers in multistage compressors when the repeating-stage condition is reached. These tests were performed in a small four-stage compressor; the flow was essentially incompressible and the Reynolds number based on blade chord was about 5 • 104. Two series of tests were performed; in one series the full design number of blades were installed, in the other series half the blades were removed to reduce the solidity and double the staggered spacing. Initially it was wished to examine the hypothesis proposed by Smith [1] that staggered spacing is a particularly important scaling parameter for boundary layer thickness; the results of these tests and those of Hunter and Cumpsty [2] tend to suggest that it is tip clearance which is most potent in determining boundary-layer integral thicknesses. The integral thicknesses agree quite well with those published by Smith.


Author(s):  
Minsuk Choi ◽  
Junyoung Park ◽  
Jehyun Baek

A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow and the loss characteristics in a low-speed axial compressor operating at the design condition (φ = 85%) and near stall condition (φ = 65%). At the design condition, independent of the inlet boundary layer thickness, flows in the axial compressor show similar characteristics such as the pressure distribution, size of hub corner-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. But, as the load is increased, for the thick inlet boundary layer at hub and casing, the hub corner stall grows to make a large separation region between the hub and suction surface, and the tip leakage flow is more vortical than that observed in the case with thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is suddenly turned to the downstream. For the thin inlet boundary layer, the hub corner stall decays to form the thick boundary layer from hub to midspan on the suction surface owing to the blockage of the tip leakage flow and the tip leakage flow leans to the circumferential direction more than at the design condition. In addition to these, the severe reverse flow, induced by both boundary layers on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in a heavy loss. As a result of these differences of the internal flow made by the different inlet boundary layer thickness, the spanwise distribution of the total loss is changed dramatically. At the design condition, total pressure losses for two different boundary layers are almost alike in the core flow region but the larger losses are generated at both hub and tip when the inlet boundary layer is thin. At the near stall condition, however, total loss for thick inlet boundary layer is found to be greater than that for thin inlet boundary layer on most of the span except the region near the hub and casing. In order to analyze effects of inlet boundary layer thickness on total loss in detail, total loss is scrutinized through three major loss categories available in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss.


Author(s):  
Kenneth L. Suder

A detailed experimental investigation to understand and quantify the development of blockage in the flow field of a transonic, axial flow compressor rotor (NASA Rotor 37) has been undertaken. Detailed laser anemometer measurements were acquired upstream, within, and downstream of a transonic, axial compressor rotor operating at 100%, 85%, 80%, and 60% of design speed which provided inlet relative Mach numbers at the blade tip of 1.48, 1.26, 1.18, and 0.89 respectively. The impact of the shock on the blockage development, pertaining to both the shock / boundary layer interactions and the shock / tip clearance flow interactions, is discussed. The results indicate that for this rotor the blockage in the endwall region is 2–3 times that of the core flow region, and the blockage in the core flow region more than doubles when the shock strength is sufficient to separate the suction surface boundary layer.


1986 ◽  
Vol 52 (484) ◽  
pp. 3980-3986
Author(s):  
Masahiro INOUE ◽  
Motoo KUROUMARU ◽  
Minoru FUKUHARA ◽  
Toshihlko BEKKI

Sign in / Sign up

Export Citation Format

Share Document