scholarly journals A Simple Gas Turbine Performance Model for Various Types of Combined Cycle Power Plants. Calibration of the model by the simple cycle data.

1997 ◽  
Vol 63 (612) ◽  
pp. 2862-2867
Author(s):  
Jube MATSUMURA ◽  
Yukio HISHINUMA
Author(s):  
Isaac Shnaid

The modem combined cycle power plants achieved thermal efficiency of 50–55% by applying bottoming multistage Rankine steam cycle. At the same time, the Brayton cycle is an attractive option for a bottoming cycle engine. In the author’s US Patent No. 5,442,904 is described a combined cycle system with a simple cycle gas turbine, the bottoming air turbine Brayton cycle, and the reverse Brayton cycle. In this system, air turbine Brayton cycle produces mechanic power using exergy of gas turbine exhaust gases, while the reverse Brayton cycle refrigerates gas turbine inlet air. Using this system, supercharging of gas turbine compressor becomes possible. In the paper, thermodynamic optimization of the system is done, and the system techno-economic characteristics are evaluated.


Author(s):  
Bouria Faqihi ◽  
Fadi A. Ghaith

Abstract In the Gulf Cooperation Council region, approximately 70% of the thermal power plants are in a simple cycle configuration while only 30% are in combined cycle. This high simple to combined cycle ratio makes it of a particular interest for original equipment manufacturers to offer exhaust heat recovery upgrades to enhance the thermal efficiency of simple cycle power plants. This paper aims to evaluate the potential of incorporating costly-effective new developed heat recovery methods, rather than the complex products which are commonly available in the market, with relevant high cost such as heat recovery steam generators. In this work, the utilization of extracted heat was categorized into three implementation zones: use within the gas turbine flange-to-flange section, auxiliary systems and outside the gas turbine system in the power plant. A new methodology was established to enable qualitative and comparative analyses of the system performance of two heat extraction inventions according to the criteria of effectiveness, safety and risk and the pressure drop in the exhaust. Based on the conducted analyses, an integrated heat recovery system was proposed. The new system incorporates a circular duct heat exchanger to extract the heat from the exhaust stack and deliver the intermediary heat transfer fluid to a separate fuel gas exchanger. This system showed superiority in improving the thermodynamic cycle efficiency, while mitigating safety risks and avoiding undesired exhaust system pressure drop.


Author(s):  
E. Tsoutsanis ◽  
Y. G. Li ◽  
P. Pilidis ◽  
M. Newby

Accurate gas turbine performance simulation is a vital aid to the operational and maintenance strategy of thermal plants having gas turbines as their prime mover. Prediction of the part load performance of a gas turbine depends on the quality of the engine’s component maps. Taking into consideration that compressor maps are proprietary information of the manufacturers, several methods have been developed to encounter the above limitation by scaling and adapting component maps. This part of the paper presents a new off-design performance adaptation approach with the use of a novel compressor map generation method and Genetic Algorithms (GA) optimization. A set of coefficients controlling a generic compressor performance map analytically is used in the optimization process for the adaptation of the gas turbine performance model to match available engine test data. The developed method has been tested with off-design performance simulations and applied to a GE LM2500+ aeroderivative gas turbine operating in Manx Electricity Authority’s combined cycle power plant in the Isle of Man. It has been also compared with an earlier off-design performance adaptation approach, and shown some advantages in the performance adaptation.


Author(s):  
Myungkuk Lee ◽  
Myoung-Cheol Kang ◽  
Hongsuk Roh ◽  
Jayoung Ki

The solution was developed for the maintenance decision support of combined cycle power plant gas turbine. The developed solution provides the calculated result of optimal overhaul interval through the following modules: Overhaul Interval Prediction, Real Time Performance Monitoring, Model-Based Diagnostics, Performance Trend Analysis, Compressor Washing Period Management, and Blade Path Temperature Analysis. Model-Based Diagnostics module analyzed the differences between the data of MHI501G gas turbine performance model and the online measurement. Gas turbine performance model can be modified by the type of gas turbine of each combined cycle power plant. Compressor washing management module suggests the optimal point of balancing between the compressor performance and the maintenance cost. The predicted results of compressor washing period and overhaul period are able to support the operators in combined cycle power plant to make a proper decision of maintenance task. The developed solution was applied to MHI501G gas turbine and is, in present, on the process of field test at GUNSAN combined cycle power plant, South Korea.


Author(s):  
Sepehr Sanaye ◽  
Hossein Rezazadeh ◽  
Mehrdad Aghazeynali ◽  
Mehrdad Samadi ◽  
Daryoush Mehranian ◽  
...  

Inlet fogging has been noticed widely in recent years as a method of gas turbine air inlet cooling for increasing the power output of gas turbines and combined cycle power plants. To study the effects of inlet fogging on gas turbine performance, in the first step, the evaporation of water droplets in the compressor inlet duct was modeled, and at the end of the inlet duct, the diameter of water droplets were estimated. The results of this process were compared with the results of FLUENT software. In the second step, the droplets which were not evaporated in compressor inlet duct were studied during wet compression in the compressor and the reduction in compressor discharge air temperature was predicted. Finally, the effects of both evaporative cooling in inlet duct, and wet compression in compressor, on the power output, and turbine exhaust temperature of a gas turbine with turbine blade cooling were investigated. These results for various amounts of air bleeding, without and with inlet fogging in the range of (0–2%) overspray are reported.


2003 ◽  
Vol 23 (17) ◽  
pp. 2169-2182 ◽  
Author(s):  
Manuel Valdés ◽  
Ma Dolores Durán ◽  
Antonio Rovira

2000 ◽  
Vol 124 (1) ◽  
pp. 89-95 ◽  
Author(s):  
G. Lozza ◽  
P. Chiesa

This paper discusses novel schemes of combined cycle, where natural gas is chemically treated to remove carbon, rather than being directly used as fuel. Carbon conversion to CO2 is achieved before gas turbine combustion. The first part of the paper discussed plant configurations based on natural gas partial oxidation to produce carbon monoxide, converted to carbon dioxide by shift reaction and therefore separated from the fuel gas. The second part will address methane reforming as a starting reaction to achieve the same goal. Plant configuration and performance differs from the previous case because reforming is endothermic and requires high temperature heat and low operating pressure to obtain an elevated carbon conversion. The performance estimation shows that the reformer configuration has a lower efficiency and power output than the systems addressed in Part I. To improve the results, a reheat gas turbine can be used, with different characteristics from commercial machines. The thermodynamic efficiency of the systems of the two papers is compared by an exergetic analysis. The economic performance of natural gas fired power plants including CO2 sequestration is therefore addressed, finding a superiority of the partial oxidation system with chemical absorption. The additional cost of the kWh, due to the ability of CO2 capturing, can be estimated at about 13–14 mill$/kWh.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


Author(s):  
Akber Pasha

In recent years the combined cycle has become a very attractive power plant arrangement because of its high cycle efficiency, short order-to-on-line time and flexibility in the sizing when compared to conventional steam power plants. However, optimization of the cycle and selection of combined cycle equipment has become more complex because the three major components, Gas Turbine, Heat Recovery Steam Generator and Steam Turbine, are often designed and built by different manufacturers. Heat Recovery Steam Generators are classified into two major categories — 1) Natural Circulation and 2) Forced Circulation. Both circulation designs have certain advantages, disadvantages and limitations. This paper analyzes various factors including; availability, start-up, gas turbine exhaust conditions, reliability, space requirements, etc., which are affected by the type of circulation and which in turn affect the design, price and performance of the Heat Recovery Steam Generator. Modern trends around the world are discussed and conclusions are drawn as to the best type of circulation for a Heat Recovery Steam Generator for combined cycle application.


1980 ◽  
Author(s):  
J. Jermanok ◽  
R. E. Keith ◽  
E. F. Backhaus

A new 37-MW, single-shaft gas turbine power plant has been designed for electric power generation, for use in either simple-cycle or combined-cycle applications. This paper describes the design features, instrumentation, installation, test, and initial operation.


Sign in / Sign up

Export Citation Format

Share Document