performance adaptation
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4356
Author(s):  
Binbin Yan ◽  
Minghui Hu ◽  
Kun Feng ◽  
Zhinong Jiang

Accurate component analytical solution is very important to gas path prognostics and diagnostics of a gas turbine. However, due to the highly complex nonlinear behavior of component performance, the nonlinear relationships between various key parameters still should be further studied. For this purpose, a new component analytical solution is proposed to enhance the current adaptation and diagnostics scheme of gas turbines. First, the tuning factors are defined to construct the enhanced component analytical solution and identify the nonlinear behaviors more accurately. Second, a sensitivity analysis for tuning factors is performed to understand the effect of each factor on the shape of component maps. Then, a particle swarm optimization algorithm is used to capture the optimal tuning factors, and then the performance adaptation is implemented. Finally, the proposed method has been validated with normal field data and fouling fault field data of a PGT25+ gas turbine. Compared with two earlier off-design point adaptation methods, the proposed method shows some advantages in performance adaptation and diagnostics.


2021 ◽  
Vol 8 (2) ◽  
pp. 181-203
Author(s):  
Amir Tabadkani ◽  
◽  
Astrid Roetzel ◽  
Hong Xian Li ◽  
Aris Tsangrassoulis ◽  
...  

Exposure to daylight significantly affects the psychological well-being of occupants by diminishing headaches, eye tensions, or stress. Daylight penetration is a matter of collaboration between building façade and perimeter zones that can be controlled through façade design features. This study reviews available daylighting systems to block or redirect natural light inside the space and their overall performance. Adaptation found to be the main key feature of daylighting systems to improve their effectiveness in indoor environments. As the main implication of such systems on the visual comfort performance of occupants, a list of quantitative indices is studied based on their mathematical equation to outline their advantages and limitations. Findings revealed a lack of agreement on acceptable indoor illuminance thresholds for most of the indices and the absence of a reliable glare index in presence of sun within the view field of the occupant. Similarly, many green building certifications propose a specific criterion to assess view out but remained a challenge for future studies.


2021 ◽  
pp. 413-420
Author(s):  
James A. Fleming ◽  
Ciarán Ó Catháin ◽  
Liam D. Harper ◽  
Robert J. Naughton

During a 7-day training and/or competition period, macronutrient intake and distribution was assessed using food diaries, supported by remote food photography and 24-hr multiple pass recalls of youth tennis players categorised by under 12s, under 14s and under 16+ age groups (n = 27). Total energy did not differ between age groups nor type of day (training [TD], competition day [CD]), irrespective of a significant increase in body mass reported in the older players (U16+; p < 0.05). Average intakes were consistently below 2250 kcal·day-1 (range 1965 ± 317–2232 ± 612 kcal·day-1). Carbohydrate consumption was below guidelines for all groups (≤6g·kg-1). Conversely, protein intake met or exceeded guidelines throughout, with intakes ≥2 g·kg-1 for both the U12 and U14 age groups on both days. Protein intake was ~17% higher on TDs than CDs (p < 0.05), with protein intake at lunch significantly higher on TDs than CDs (p < 0.05). No further differences were observed between breakfast, lunch or dinner between group or day. Inconsistent snacking was reported, with players consuming snacks on less than half of the days reported (46 ± 12% of TDs and 43 ± 30% of CDs). In conclusion, youth tennis players present sub-optimal nutrition practices, appearing to under fuel and under consume carbohydrate for performance, adaptation, recovery and health.


2021 ◽  
Vol 118 (6) ◽  
pp. e2008986118
Author(s):  
Marjorie A. Liénard ◽  
Gary D. Bernard ◽  
Andrew Allen ◽  
Jean-Marc Lassance ◽  
Siliang Song ◽  
...  

Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.


Sign in / Sign up

Export Citation Format

Share Document