scholarly journals Dynamic behavior of oil film journal bearings in turbulent regime. (2nd Report, In the case of an imbalanced rigid rotor).

1989 ◽  
Vol 55 (513) ◽  
pp. 1259-1264 ◽  
Author(s):  
Hiromu HASHIMOTO ◽  
Sanae WADA ◽  
Masayoshi SUMITOMO
Author(s):  
A. Vania ◽  
P. Pennacchi ◽  
S. Chatterton

Many common faults and malfunctions in rotating machines mainly cause synchronous vibrations (1X). Very high 1X vibration levels can occur, in case of severe faults. Large journal orbits inside oil-film journal bearings may generate non-linear effects in the oil-film forces, whose presence can be detected by means of the appearance of not negligible super-synchronous vibrations of the shafts. In this paper, a model-based method has been used to study the effects of non-linear oil-film forces on the machine dynamic behavior that may occur during runups and rundowns. In general, it is possible to suppose that the importance of the non-linear behavior of oil-film journal bearings, and then the level of the super-synchronous vibrations, increases with the amplitude of the 1X vibrations caused by the primary fault. However, the numerical results of this study and the experimental evidences found in the monitoring data of a real machine have shown that the super-synchronous harmonic components of the oil-film forces may excite resonances of the shaft-train causing unexpected amplifications of the super-synchronous vibrations. This may make difficult the recognition of the presence of non-linear effects in the machine dynamic behavior and the identification of the actual cause of abnormal vibrations.


1988 ◽  
Vol 110 (3) ◽  
pp. 539-545 ◽  
Author(s):  
H. Hashimoto ◽  
S. Wada ◽  
M. Sumitomo

The effects of fluid inertia on the dynamic behavior of oil film journal bearings are theoretically investigated. The dynamic oil film forces considering the combined effects of turbulence and fluid inertia are analytically obtained under the short bearing assumption. Based on the linearized analysis, the whirl onset velocity for a balanced rigid rotor supported horizontally in the oil film journal bearings are determined initially in the case of the length-to-diameter ratio of λ = 0.5 for Reynolds numbers of Re = 2750, 4580, and 5500. Moreover, the nonlinear equations of motion for the rotor are solved by the improved Euler’s method, and the relations between the transient journal motion and the pressure distribution corresponding to the above Reynolds numbers are examined. It is found that the fluid inertia significantly affects the dynamic behavior of turbulent journal bearings under certain operating conditions.


1987 ◽  
Vol 53 (495) ◽  
pp. 2367-2372
Author(s):  
Hiromu HASHIMOTO ◽  
Sanae WADA ◽  
Masayoshi SUMITOMO

Author(s):  
Leandro Ito Ramos ◽  
Douglas Jhon Ramos ◽  
Gregory Bregion Daniel

2001 ◽  
Vol 123 (4) ◽  
pp. 755-767 ◽  
Author(s):  
Cheng-Chi Wang ◽  
Cha’o-Ku`ang Chen

This paper studies the bifurcation of a rigid rotor supported by a gas film bearing. A time-dependent mathematical model for gas journal bearings is presented. The finite differences method and the Successive Over Relation (S.O.R) method are employed to solve the Reynolds’ equation. The system state trajectory, Poincare´ maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor center in the horizontal and vertical directions under different operating conditions. The analysis shows how the existence of a complex dynamic behavior comprising periodic and subharmonic response of the rotor center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and rotational velocity. The results of this study contribute to a further understanding of the nonlinear dynamics of gas film rotor-bearing systems.


2021 ◽  
pp. 1-24
Author(s):  
Gudeta Berhanu Benti ◽  
David Jose Rondon ◽  
Rolf Gustavsson ◽  
Jan-Olov Aidanpää

Abstract In this paper, the dynamics of tilting pad journal bearings with four and eight pads are studied and compared experimentally and numerically. The experiments are performed on a rigid vertical rotor supported by two identical bearings. Two sets of experiments are carried out under similar test setup. One set is performed on a rigid rotor with two four-pad bearings, while the other is on a rigid rotor with two eight-pad bearings. The dynamic properties of the two bearing types are compared with each other by studying the unbalance response of the system at different rotor speeds. Numerically, the test rig is modeled as a rigid rotor and the bearing coefficients are calculated based on Navier-Stokes equation. A nonlinear bearing model is developed and used in the steady state response simulation. The measured and simulated displacement and force orbits show similar patterns for both bearing types. Compared to the measurement, the simulated mean value and range (peak-to-peak amplitude) of the bearing force deviate with a maximum of 16 % and 38 %, respectively. It is concluded that, unlike the eight-pad TPJB, the four-pad TPJB excite the system at the third and fifth-order frequencies, which are due to the number of pads, and the amplitudes of these frequencies increase with the rotor speed.


Sign in / Sign up

Export Citation Format

Share Document