scholarly journals Intelligent Control Using Neural Network for Man-Machine System. Safety and Comfortableness of Industrial Vehicle.

1998 ◽  
Vol 64 (621) ◽  
pp. 1707-1714
Author(s):  
Kazuaki TSUJIOKA ◽  
Kazuo YOSHIDA ◽  
Akio NAGAMATSU ◽  
Hiroyuki ITO
Author(s):  
Renqiang Wang ◽  
Qinrong Li ◽  
Shengze Miao ◽  
Keyin Miao ◽  
Hua Deng

Abstract: The purpose of this paper was to design an intelligent controller of ship motion based on sliding mode control with a Radial Basis Function (RBF) neural network optimized by the genetic algorithm and expansion observer. First, the improved genetic algorithm based on the distributed genetic algorithm with adaptive fitness and adaptive mutation was used to automatically optimize the RBF neural network. Then, with the compensation designed by the RBF neural network, anti-saturation control was realized. Additionally, the intelligent control algorithm was introduced by Sliding Mode Control (SMC) with the stability theory. A comparative study of sliding mode control integrated with the RBF neural network and proportional–integral–derivative control combined with the fuzzy optimization model showed that the stabilization time of the intelligent control system was 43.75% faster and the average overshoot was reduced by 52% compared with the previous two attempts. Background: It was known that the Proportional-Integral-Derivative (PID) control and self-adaptation control cannot really solve the problems of frequent disturbance from external wind and waves, as well as the problems with ship nonlinearity and input saturation. So, the previous ship motion controller should be transformed by advanced intelligent technology, on the basis of referring to the latest relevant patent design methods. Objective: An intelligent controller of ship motion was designed based on optimized Radial Basis Function Neural Network (RBFNN) in the presence of non-linearity, uncertainty, and limited input. Methods: The previous ship motion controller was remodeled based on Sliding Mode Control (SMC) with RBFNN optimized by improved genetic algorithm and expansion observer. The intelligent control algorithm integrated with genetic neural network solved the problem of system model uncertainty, limited control input, and external interference. Distributed genetic with adaptive fitness and adaptive mutation method guaranteed the adequacy of search and the global optimal convergence results, which enhanced the approximation ability of RBFNN. With the compensation designed by the optimized RBFNN, it was realized anti-saturation control. The chattering caused by external disturbance in SMC controller was reduced by the expansion observer. Results: A comparative study with RBFNN-SMC control and fuzzy-PID control, the stabilization time of the intelligent control system was 43.75% faster, the average overshoot was reduced by 52%, compared to the previous two attempts. Conclusion: The intelligent control algorithm succeed in dealing with the problems of nonlinearity, uncertainty, input saturation, and external interference. The intelligent control algorithm can be applied into research and development ship steering system, which would be created a new patent.


2020 ◽  
pp. 81-86
Author(s):  
Yu.G. Kabaldin ◽  
D.A. Shatagin ◽  
M.S. Anosov ◽  
A.M. Kuz'mishina

The formation of chips during the processing of various materials was studied. The relationship between the type of chips, the type of crystal lattice of the material and the number of sliding systems is shown. A neural network model of chip formation is developed, which allows predicting the type of chips. An intelligent control system for the process of chip formation during cutting is proposed. Keywords: chip formation, crystal lattice, neural network model, type of chips. [email protected]


Author(s):  
O.V. Nepomnyashchiy ◽  
A.V. Tarasov ◽  
Yu.V. Krasnobaev ◽  
V.N. Khaidukova ◽  
D.O. Nepomnyashchiy

The problem of increasing the efficiency of power units of autonomous electric transport vehicles is considered. The task of creating a promising power system control device has been singled out. It is determined that in creating such devices, significant results can be obtained by using an intelligent module in the control loop of the electric drive. Goal. It is necessary to develop a power plant model with intelligent control, allowing to obtain data sets about currents, voltages and engine speeds in different modes of operation. The architecture of an intelligent control device, a PID controller based on a neural network, has been proposed; it has been proposed to exclude rotor angular velocity sensors from the classical feedback loop. The type and architecture of the neural network is defined. In the software environment MatLab the model of neuroemulator of the engine for formation of a training sample of a neural network by a method of Levenberg – Marquardt is developed. The trained neural network is implemented in the developed model of the electric motor control loop. The results of simulation of the intelligent control device showed a good convergence of the output influences generated by the neuroemulator with the actual parameters of the electric motor.


Sign in / Sign up

Export Citation Format

Share Document