scholarly journals A Study on Noise and Flow Fluctuation Reduction of Water Hydraulic Two-Stage High Speed Solenoid Valve Using Leakage Flow around the Main Poppet as Pilot Flow

2005 ◽  
Vol 71 (705) ◽  
pp. 1498-1505
Author(s):  
Sung-Hwan PARK ◽  
Ato KITAGAWA
2002 ◽  
Vol 2002 (5-1) ◽  
pp. 137-142 ◽  
Author(s):  
Sung-Hwan PARK ◽  
Ato KITAGAWA ◽  
Masato KAWASHIMA ◽  
Jin-Kul LEE ◽  
Pindong WU

2005 ◽  
Vol 36 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Sung-Hwan PARK ◽  
Ato KITAGAWA ◽  
Masato KAWASHIMA

2018 ◽  
Vol 39 (7) ◽  
pp. 1700809 ◽  
Author(s):  
Xiao Kuang ◽  
Zeang Zhao ◽  
Kaijuan Chen ◽  
Daining Fang ◽  
Guozheng Kang ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098437
Author(s):  
Liu Jiang ◽  
Guo Zhiping ◽  
Miao Shujing ◽  
He Xiangxin ◽  
Zhu Xinyu

In order to meet the requirements of output torque, efficiency and compact shape of micro-spindles for small parts machining, a two-stage axial micro air turbine spindle with an axial inlet and outlet is proposed. Based on the k-ω turbulence model of SST, the flow field and operation characteristics of the two-stage axial micro air turbine spindle were studied using computational fluid dynamics (CFD) combined with an experimental study. We obtained the air turbine spindle under different working conditions of the loss and torque characteristics. When the inlet pressure was 300 KPa, the output speed of the two-stage turbine was 100,000 rpm, 9% higher than that of a single-stage turbine output torque. The total torque reached 6.39 N·mm, and the maximum efficiency of the turbine and the spindle were 42.2% and 32.3%, respectively. Through the research on the innovative structure of the two-stage axial micro air turbine spindle, the overall performance of the principle prototype has been significantly improved and the problems of insufficient output torque and low working efficiency in high-speed micro-machining can be solved practically, which laid a solid foundation for improving the machining efficiency of small parts and reducing the size of micro machine tool.


2019 ◽  
Vol 176 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Ireneusz PIELECHA ◽  
Wojciech BUESCHKE ◽  
Maciej SKOWRON ◽  
Łukasz FIEDKIEWICZ ◽  
Filip SZWAJCA ◽  
...  

Searching for further reduction of fuel consumption simultaneously with the reduction of toxic compounds emission new systems for lean-mixture combustion for SI engines are being discussed by many manufacturers. Within the European GasOn-Project (Gas Only Internal Combustion Engines) the two-stage combustion and Turbulent Jet Ignition concept for CNG-fuelled high speed engine has been proposed and thoroughly investigated where the reduction of gas consumption and increasing of engine efficiency together with the reduction of emission, especially CO2 was expected. In the investigated cases the lean-burn combustion process was conducted with selection of the most effective pre-combustion chamber. The experimental investigations have been performed on single-cylinder AVL5804 research engine, which has been modified to SI and CNG fuelling. For the analysis of the thermodynamic, operational and emission indexes very advanced equipment has been applied. Based on the measuring results achieved for different pre-chamber config-urations the extended methodology of polioptimization by pre-chamber selection and the shape of main chamber in the piston crown for proposed combustion system has been described and discussed. The results of the three versions of the optimization methods have been comparatively summarized in conclusions.


Sign in / Sign up

Export Citation Format

Share Document