Eigenvalue localization for complex matrices

Author(s):  
Ibrahim Gumus ◽  
Omar Hirzallah ◽  
Fuad Kittaneh

Let $A$ be an $n\times n$ complex matrix with $n\geq 3$. It is shown that at least $n-2$ of the eigenvalues of $A$ lie in the disk \begin{equation*}\left\vert z-\frac{\func{tr}A}{n}\right\vert \leq \sqrt{\frac{n-1}{n}\left(\sqrt{\left( \left\Vert A\right\Vert _{2}^{2}-\frac{\left\vert \func{tr} A\right\vert ^{2}}{n}\right) ^{2}-\frac{\left\Vert A^{\ast }A-AA^{\ast}\right\Vert _{2}^{2}}{2}}-\frac{\limfunc{spd}\nolimits^{2}(A)}{2}\right) },\end{equation*} where $\left\Vert A\right\Vert _{2},$ $\func{tr}A$, and $\limfunc{spd}(A)$ denote the Frobenius norm, the trace, and the spread of $A$, respectively. In particular, if $A=\left[ a_{ij}\right] $ is normal, then at least $n-2$ of the eigenvalues of $A$ lie in the disk {\small \begin{eqnarray*} & & \left\vert z-\frac{\func{tr}A}{n}\right\vert \\ & & \leq \sqrt{\frac{n-1}{n}\left( \frac{\left\Vert A\right\Vert _{2}^{2}}{2}-\frac{\left\vert \func{tr}A\right\vert ^{2}}{n}-\frac{3}{2}\max_{i,j=1,\dots,n} \left( \sum_{\substack{ k=1 \\ k\neq i}}^{n}\left\vert a_{ki}\right\vert ^{2}+\sum_{\substack{ k=1 \\ k\neq j}}^{n}\left\vert a_{kj}\right\vert ^{2}+\frac{\left\vert a_{ii}-a_{jj}\right\vert ^{2}}{2}\right) \right) }. \end{eqnarray*}} Moreover, the constant $\frac{3}{2}$ can be replaced by $4$ if the matrix $A$ is Hermitian.

2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Xuefeng Duan ◽  
Chunmei Li

Based on the alternating projection algorithm, which was proposed by Von Neumann to treat the problem of finding the projection of a given point onto the intersection of two closed subspaces, we propose a new iterative algorithm to solve the matrix nearness problem associated with the matrix equations AXB=E, CXD=F, which arises frequently in experimental design. If we choose the initial iterative matrix X0=0, the least Frobenius norm solution of these matrix equations is obtained. Numerical examples show that the new algorithm is feasible and effective.


1984 ◽  
Vol 106 (2) ◽  
pp. 239-249 ◽  
Author(s):  
E. J. Gunter ◽  
R. R. Humphris ◽  
H. Springer

The calculation of the damped eigenvalues of a large multistation gas turbine by the complex matrix transfer procedure may encounter numerical difficulties, even on a large computer due to numerical round-off errors. In this paper, a procedure is presented in which the damped eigenvalues may be rapidly and accurately calculated on a minicomputer with accuracy which rivals that of a mainframe computer using the matrix transfer method. The method presented in this paper is based upon the use of constrained normal modes plus the rigid body modes in order to generate the characteristic polynomial of the system. The constrained undamped modes, using the matrix transfer process with scaling, may be very accurately calculated for a multistation turbine on a minicomputer. In this paper, a five station rotor is evaluated to demonstrate the procedure. A method is presented in which the characteristic polynomial may be automatically generated by Leverrier’s algorithm. The characteristic polynomial may be directly solved or the coefficients of the polynomial may be examined by the Routh criteria to determine stability. The method is accurate and easy to implement on a 16 bit minicomputer.


2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Feng Yin ◽  
Guang-Xin Huang

An iterative algorithm is constructed to solve the generalized coupled Sylvester matrix equations(AXB-CYD,EXF-GYH)=(M,N), which includes Sylvester and Lyapunov matrix equations as special cases, over generalized reflexive matricesXandY. When the matrix equations are consistent, for any initial generalized reflexive matrix pair[X1,Y1], the generalized reflexive solutions can be obtained by the iterative algorithm within finite iterative steps in the absence of round-off errors, and the least Frobenius norm generalized reflexive solutions can be obtained by choosing a special kind of initial matrix pair. The unique optimal approximation generalized reflexive solution pair[X̂,Ŷ]to a given matrix pair[X0,Y0]in Frobenius norm can be derived by finding the least-norm generalized reflexive solution pair[X̃*,Ỹ*]of a new corresponding generalized coupled Sylvester matrix equation pair(AX̃B-CỸD,EX̃F-GỸH)=(M̃,Ñ), whereM̃=M-AX0B+CY0D,Ñ=N-EX0F+GY0H. Several numerical examples are given to show the effectiveness of the presented iterative algorithm.


2021 ◽  
Author(s):  
Tao Lin ◽  
Xinglian Chen ◽  
Li Wang ◽  
Haixian Fang ◽  
Maoxuan Li ◽  
...  

Abstract The simultaneous determination method of 8 amide pesticides by multi-walled carbon nanotubes (MWCNs) cleanup, combined with QuEChERS method and ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry has been developed and successfully applied in complex matrix such as green onions, celery, leeks, citrus, lychees, avocado. The matric effect of MWCNs is optimized and compared with QuEChERS materials. The results show that MWCNs can effectively reduce the matrix effect in sample extraction. The mass spectrometry is optimized, through their chemical structure skeletons, the ESI+ and ESI- mode are simultaneously scanned in the method. The coefficient (r) is greater than 0.9990, the limit of quantification ranges from 0.03 to 0.80 μg/kg, the recovery rate ranges from 71.2% to 120%, and the relative standard deviation (RSD) ranges from 3.8% to 9.4%. The method is fast, simple, sensitive, and has good purification effect. It is suitable for the rapid determination of amide pesticides in complex matrix agri-food.


2013 ◽  
Vol 860-863 ◽  
pp. 2727-2731
Author(s):  
Kai Fu Liang ◽  
Ming Jun Li ◽  
Ze Lin Zhu

Hamiltonian matrices have many applications to design automation and autocontrol, in particular in the linear-quadratic autocontrol problem. This paper studies the inverse problems of generalized Hamiltonian matrices for matrix equations. By real representation of complex matrix, we give the necessary and sufficient conditions for the existence of a Hermitian generalized Hamiltonian solutions to the matrix equations, and then derive the representation of the general solutions.


Author(s):  
Andrew D McRae ◽  
Mark A Davenport

Abstract This paper considers the problem of estimating a low-rank matrix from the observation of all or a subset of its entries in the presence of Poisson noise. When we observe all entries, this is a problem of matrix denoising; when we observe only a subset of the entries, this is a problem of matrix completion. In both cases, we exploit an assumption that the underlying matrix is low-rank. Specifically, we analyse several estimators, including a constrained nuclear-norm minimization program, nuclear-norm regularized least squares and a non-convex constrained low-rank optimization problem. We show that for all three estimators, with high probability, we have an upper error bound (in the Frobenius norm error metric) that depends on the matrix rank, the fraction of the elements observed and the maximal row and column sums of the true matrix. We furthermore show that the above results are minimax optimal (within a universal constant) in classes of matrices with low-rank and bounded row and column sums. We also extend these results to handle the case of matrix multinomial denoising and completion.


2008 ◽  
Vol 1 ◽  
pp. ASWR.S752 ◽  
Author(s):  
Lucía Arregui ◽  
María Linares ◽  
Blanca Pέrez-Uz ◽  
Almudena Guinea ◽  
Susana Serrano

The biological community in activated sludge wastewater plants is organized within this ecosystem as bioaggregates or flocs, in which the biotic component is embedded in a complex matrix comprised of extracellular polymeric substances mainly of microbial origin. The aim of this work is to study the role of different floc-associated ciliates commonly reported in wastewater treatment plants-crawling Euplotes and sessile Vorticella- in the formation of aggregates. Flocs, in experiments with ciliates and latex beads, showed more compactation and cohesion among particles than those in the absence of ciliates. Ciliates have been shown to contribute to floc formation through different mechanisms such as the active secretion of polymeric substances (extrusomes), their biological activities (movement and feeding strategies), or the cysts formation capacity of some species. Staining with lectins coupled to fluorescein showed that carbohydrate of the matrix contained glucose, manose, N-acetyl-glucosamine and galactose. Protein fraction revealed over the latex beads surfaces could probably be of bacterial origin, but nucleic acids represented an important fraction of the extracellular polymeric substances of ciliate origin.


2001 ◽  
Vol 89 (11-12) ◽  
Author(s):  
Marin Ayranov ◽  
K. Wacker ◽  
Urs Krähenbühl

The separation of uranium and thorium from complex matrixes such as marine sediments using solvent extraction and determination by means of Photon-Electron Rejecting Liquid Alpha Spectrometry (PERALS®) has successfully been performed. Two extraction schemes, using TOPO and HDEHP, respectively, were compared for the separation of uranium and thorium from the matrix components. The results show recoveries between 73 and 92% for


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
F. Soleymani ◽  
P. S. Stanimirović ◽  
S. Shateyi ◽  
F. Khaksar Haghani

This study presents a matrix iterative method for finding the sign of a square complex matrix. It is shown that the sequence of iterates converges to the sign and has asymptotical stability, provided that the initial matrix is appropriately chosen. Some illustrations are presented to support the theory.


Sign in / Sign up

Export Citation Format

Share Document