scholarly journals Combined Application of Different Species of Trichoderma and Pseudomonas fluorescens on the Cellulolytic Enzymes of Fusarium Oxysporum for the Control of Fusarium wiltDisease in Arachis hypogea. L

2017 ◽  
Vol 14 (3) ◽  
pp. 1169-1176
Author(s):  
P. Rajeswari ◽  
Rupam Kapoor

ABSTRACT: Fusarium oxysporum causes Fusarium wilt of crop plants leads to considerable yield loss. The study was conducted to determine the beneficial effects of combining Trichoderma species and Pseudomonas fluorescens i.e Trichodema viride+ Pseudomonas fluorescens (Tv+Pf) (1+2%), Trichoderma harzianum+Pseudomonas fluorescens (Th+Pf) (1.5+2%), Trichoderma viride +Trichoderma harzianum (Tv+Th) (1+1.5%) on the activity of cellulolytic enzymes of Fusarium oxysporum to control Fusarium wilt of Arachis hypogaea. L wilt in vitro. The activity of 1,4 -β – Endoglucanase, 1,4 -β – Exoglucanase, Cellobiases produced by Fusarium oxysporum (Control) was higher. Maximum inhibition of Cellulolytic enzymes was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf) (1+2%), followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf) (1.5+2%) and Trichoderma viride + Trichoderma harzianum (Tv+Th) (1+1.5%). However, disease suppression of Fusarium wilt of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2%) was considerably better as compared to other two strains. At the same time the other two combinations resulted in enhanced disease suppression as compared to single strains. This indicates that the potential benefits of using combination treatments to suppress Fusarium wilt. The study suggests the significance of interactive effects of Trichoderma and Pseudomonas in biocontrol of wilt disease.

2015 ◽  
Vol 3 (1) ◽  
pp. 106-110
Author(s):  
P. Rajeswari

In an attempt to develop biocontrol system for management of Fusarium wilt in groundnut, Trichoderma viride, Trichoderma harzianum,and Pseudomonas fluorescens were evaluated for their antagonistic activity against Fusarium oxysporum in vitro. .Fusarium wilt diseasescaused by the fungus Fusarium oxysporum lead to significant yield losses of crops. Experiments were conducted on the effect of culture filtratesof T.viride (1%), T. harzianum (1.5%), and P. fluorescens (2%) on the in vitro inhibition of cellulolytic enzymes of Fusarium oxysporum. Theactivity of 1,4 endoglucanases, 1,4exoglucanase Cellobiase produced by Fusariumoxysporum was higher, when compared to control.Maximum inhibition of above Cellulolytic enzymes (1, 4 endoglucanases, 1,4exoglucanase, Cellobiase) was shown by T. viride treatment wasfollowed by T. harzianum and P. fluorescens. Of all the treatments, T. viride treatment showed higher rate of inhibition of Cellulolytic enzymesof Fusarium oxysporum followed by that of T. harzianum and P. fluorescens.This present study indicates that culture filtrate of T.viride(1%)is the best biocontrol agent in the inhibition of Fusarium oxysporum causing Fusarium wilt of Arachis hypogaea .LDOI: http://dx.doi.org/10.3126/ijasbt.v3i1.12138    Int J Appl Sci Biotechnol, Vol. 3(1): 106-110 


2019 ◽  
Vol 11 (1) ◽  
pp. 138-143 ◽  
Author(s):  
P. Rajeswari

Fusarium wilt caused by Fusarium oxysporum is a devastating disease of peanut. The fungus causes severe yield loss in groundnut. Combinations of biocontrol agents that are compatible with each other is a viable approach to control the plant disease. The study was conducted to determine the beneficiary aspects of  combining different species of Trichoderma and Pseudomonasfluorescens i.e Trichoderma viride+Pseudomonas fluorescens (Tv+Pf), Trichoderma harzianum+Pseudomonas fluorescens (Th+Pf) and Trichoderma viride +Trichoderma harzianum (Tv+Th) to control the Fusarium wilt  in  biochemicalparameters such as DNA, RNA, Amino nitrogen, phenols, dihydroxy and   proline  contents of Arachis hypogaea.L. Among the three combinations tested, Trichoderma viride + Pseudomonas fluorescens (1+2%) sprayed leaves provided greater suppression of Fusariumoxysporum by increasing the levels of DNA,RNA,Amino nitrogen contents resulting  in the suppression of  Fusarium wilt  disease of Arachis hypogaea L.Maximum  reduction of  DNA, RNA, Amino nitrogen was observed in the infected Fusariumoxysporumleaves Phenol, Dihydroxy phenols and proline contents increase sharply in the treated plants treated with (Tv+Pf) as compared to the control plants. At the same time the other two combinations resulted in  enhanced control  in  comparison with  individual ones. This present study indicates that specific combination of Trichoderma viride and Pseudomonas fluorescens could have the greater efficacy in the inhibition of pathogen  in the biocontrol of Fusarium wilt  disease  as   compared   with   individual strains.


Author(s):  
P Rajeswari ◽  
R Kapoor

Fusarium oxysporum, the soil borne pathogen causes vascular wilt, on majority of crop plants. It has been demonstrated that two different species of Trichoderma and Pseudomonas fluorescens suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol agents, and thus of several suppressive mechanisms, may represent a viable control strategy. A necessity for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between Trichoderma spp. and Pseudomonas fluorescens that have the ability to suppress Fusarium oxysporum in vitro on the activity of pectinolytic enzymes of Fusarium oxysporum. The activity of pectinolytic enzymes, i.e. pectin methyl esterase, endo and exo polymethylgalacturonases and exo and endo pectin trans eliminases produced by Fusarium oxysporum (Control) was higher. Maximum inhibition of pectin methylesterase, exo and endo polymethylgalacturonase and exo and endopectin trans eliminase was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf) (1+2%), followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf) (1.5+2%) and Trichoderma viride + Trichoderma harzianum (Tv+Th) (1+1.5%). However, pathogenecity suppression of Fusarium oxysporum, a causative of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2%) was significantly better as compared to the single bio-agent. This indicates that specific interactions between biocontrol agents influence suppression of pathogenicity factors directly by combinations of these compatible bio-agents.Int. J. Agril. Res. Innov. & Tech. 7 (2): 36-42, December, 2017


2012 ◽  
Vol 13 (3) ◽  
pp. 220
Author(s):  
Nurbailis Nurbailis ◽  
Martinius Martinius

The purpose of the research was to obtain the superior Trichoderma that had ability to colonize root with the resultbeing effective to supress Fusarium wilt desease and promote banana seedling growth. This experiment consistedof 2 factors and 4 replications. The first factor was Trichoderma spp. namely : A. Trichoderma koningii strain S6sh(TK-S6sh), B Trichoderma viride strain T1sk (TV-T1sk) and Trichoderma harzianum strain S10sh (TH-S10sh). Thesecond factor was the kind of banana namely a.Cavendis, b. Barangan and c. Kepok. The observation werecolonization ability, Fusarium wilt desease development and the banana seedling growth. The result showed thatTV-T1sk was the best spesies to colonize all banana seedling root. The highest colonization in Barangan bananaseedling root reached 80%. Trichoderma colonization in banana seedling root could suppress Fusarium wilt diseasedevelopment and increase banana seedling weight. Higher ability of Trichoderma to colonize banana seedling rootcaused lower disease incidence of Fusarium wilt and greater biomass of banana seedling. Interaction betweenTV-T1Sk and Barangan banana was the best in colonization, so they were effective to suppress Fusarium wiltdesease and increase banana seedling biomass.


2018 ◽  
Vol 3 (2) ◽  
pp. 117-127
Author(s):  
Rizka Musfirah ◽  
Rina Sriwati ◽  
Tjut Chamzurni

Abstrak. Tomat (Solanum lycopersicum) merupakan salah satu komoditas pertanian yang ditanam secara luas di seluruh dunia, termasuk di Indonesia, karena memiliki rasa yang khas dan enak, juga memiliki nilai gizi seperti sumber vitamin A dan C yang sangat baik. Produksi tomat mengalami penurunan setiap tahun, salah satunya diakibatkan oleh organisme penganggu tanaman (OPT) yaitu patogen Fusarium oxysporum sehingga perlu dilakukan pengendalian hayati yaitu menggunakan Trichoderma harzianum dalam bentuk formulasi pelet yang praktis, efektif, dan efesien. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) non faktorial yang terdiri dari 6 perlakuan dengan 3 ulangan, setiap perlakuan terdiri dari 10 unit bibit tomat. Penelitian ini terdiri dari 6 perlakuan yaitu perlakuan A (masa simpan pelet T. harzianum  4 minggu), B (masa simpan pelet T. harzianum 3 minggu), C (masa simpan pelet T. harzianum 2 minggu), D (masa simpan pelet T. harzianum 1 minggu), E (masa simpan pelet T. harzianum 0 minggu), F (tanpa perlakuan pelet T. harzianum). Peubah yang diamati yaitu pre-emergence damping off, post-emergence damping off, masa inkubasi, persentase tanaman layu, tinggi tanaman, dan jumlah daun. Hasil penelitian menunjukkan bahwa pelet T. harzianum yang disimpan 4 minggu efektif dalam menghambat perkembangan penyakit layu fusarium seperti menunda masa inkubasi sampai 7 HSI, menekan pre-emergence damping off sampai 90%, post-emergence damping off 92,95%, serta mampu meningkatkan tinggi tanaman sampai 19,63 cm dan meningkatkan jumlah daun rata-rata 7 helai pada 35 HSI. (Storing Period of Trichoderma harzianum Pellets and its ability to Inhibit the development of Fusarium Wilt Disease on Tomato Seeds)Abstract. Tomato (Solanum lycopersicum) is one of the most widely grown commodities in the world, including Indonesia. It has a distinctively good taste and many nutritional value such as vitamin A and C. However, tomato production has decreased every year. One of the main cause is the attacks by pathogens, named Fusarium oxysporum. A Biological control is necessary and the use of Trichoderma harzianum in the form of pellets is recommended because of its effectiveness, efficiency and practical use. This research used a Completely Randomized Design (RAL) non-factorial consisted of 6 treatments with 3 replications, each treatment consisted of 10 units of tomato seedlings. The 6 treatments are named as treatment A (T. harzianum pellet saving 4 weeks), B (T. harzianum pellet saving period 3 weeks), C (shelf life of 2 weeks T. harzianum pellet), D (shelf life of pellet T harzianum 1 week), E (shelf life of pellet T. harzianum 0 weeks), and F (without T. harzianum pellet treatment). The variables observed in this study are pre-emergence damping off, post-emergence damping off, incubation period, the percentage of wilted plants, plant height, and the number of leaves. The results showed that pellets of T. harzianum stored 4 weeks effectively inhibiting the development of fusarium wilt disease such as delaying incubation period up to 7 HSI (Days After Incubation), suppressing the pre-emergence damping off up to 90% and post-emergence damping off to 92.95%, also able to increase the plant height up to 19.63 cm and increase the average leaf number of 7 strands at 35 HSI.


2000 ◽  
Vol 13 (11) ◽  
pp. 1177-1183 ◽  
Author(s):  
Linda C. Dekkers ◽  
Ine H. M. Mulders ◽  
Claartje C. Phoelich ◽  
Thomas F. C. Chin-A-Woeng ◽  
André H. M. Wijfjes ◽  
...  

We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici can be controlled by inoculation of seeds with cells of the efficient root colonizer Pseudomonas fluorescens WCS365, indicating that strain WCS365 is a bio-control strain. The mechanism for disease suppression most likely is induced systemic resistance. P. fluorescens strain WCS365 and P. chlororaphis strain PCL1391, which acts through the production of the antibiotic phenazine-1-carboxamide, were differentially labeled using genes encoding autofluorescent proteins. Inoculation of seeds with a 1:1 mixture of these strains showed that, at the upper part of the root, the two cell types were present as microcolonies of either one or both cell types. Microcolonies at the lower root part were predominantly of one cell type. Mixed inoculation tended to improve biocontrol in comparison with single inoculations. In contrast to what was observed previously for strain PCL1391, mutations in various colonization genes, including sss, did not consistently decrease the biocontrol ability of strain WCS365. Multiple copies of the sss colonization gene in WCS365 improved neither colonization nor biocontrol by this strain. However, introduction of the sss-containing DNA fragment into the poor colonizer P. fluorescens WCS307 and into the good colonizer P. fluorescens F113 increased the competitive tomato root tip colonization ability of the latter strains 16- to 40-fold and 8- to 16-fold, respectively. These results show that improvement of the colonization ability of wild-type Pseudomonas strains by genetic engineering is a realistic goal.


Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 43 ◽  
Author(s):  
Arfe Castillo ◽  
Cecirly Puig ◽  
Christian Cumagun

Philippine banana is currently threatened by Fusarium oxysporum f. sp. cubense Tropical Race 4 (FocR4). This study investigated the use of Trichoderma harzianum pre-treated with Glomus spp, as a means of managing Fusarium wilt on young ‘Lakatan’ banana seedlings. Results showed that Glomus applied basally significantly improved banana seedling growth with increased increment in plant height and pseudostem diameter and heavier root weight. The application of Glomus spp. alone offered 100% protection to the ‘Lakatan’ seedlings against FocR4 as indicated by the absence of the wilting symptom. A combination of T. harzianum and Glomus spp. also gave significant effect against Fusarium wilt through delayed disease progression in the seedlings but was not synergistic. Competitive effects were suspected when application of the two biological control agents on banana roots was done simultaneously.


Sign in / Sign up

Export Citation Format

Share Document