scholarly journals Combinatorial efficacy of Trichoderma spp. and Pseudomonas fluorescens to enhance suppression of cell wall degrading enzymes produced by Fusarium wilt of Arachis hypogaea.L

Author(s):  
P Rajeswari ◽  
R Kapoor

Fusarium oxysporum, the soil borne pathogen causes vascular wilt, on majority of crop plants. It has been demonstrated that two different species of Trichoderma and Pseudomonas fluorescens suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol agents, and thus of several suppressive mechanisms, may represent a viable control strategy. A necessity for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between Trichoderma spp. and Pseudomonas fluorescens that have the ability to suppress Fusarium oxysporum in vitro on the activity of pectinolytic enzymes of Fusarium oxysporum. The activity of pectinolytic enzymes, i.e. pectin methyl esterase, endo and exo polymethylgalacturonases and exo and endo pectin trans eliminases produced by Fusarium oxysporum (Control) was higher. Maximum inhibition of pectin methylesterase, exo and endo polymethylgalacturonase and exo and endopectin trans eliminase was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf) (1+2%), followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf) (1.5+2%) and Trichoderma viride + Trichoderma harzianum (Tv+Th) (1+1.5%). However, pathogenecity suppression of Fusarium oxysporum, a causative of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2%) was significantly better as compared to the single bio-agent. This indicates that specific interactions between biocontrol agents influence suppression of pathogenicity factors directly by combinations of these compatible bio-agents.Int. J. Agril. Res. Innov. & Tech. 7 (2): 36-42, December, 2017


2015 ◽  
Vol 3 (1) ◽  
pp. 106-110
Author(s):  
P. Rajeswari

In an attempt to develop biocontrol system for management of Fusarium wilt in groundnut, Trichoderma viride, Trichoderma harzianum,and Pseudomonas fluorescens were evaluated for their antagonistic activity against Fusarium oxysporum in vitro. .Fusarium wilt diseasescaused by the fungus Fusarium oxysporum lead to significant yield losses of crops. Experiments were conducted on the effect of culture filtratesof T.viride (1%), T. harzianum (1.5%), and P. fluorescens (2%) on the in vitro inhibition of cellulolytic enzymes of Fusarium oxysporum. Theactivity of 1,4 endoglucanases, 1,4exoglucanase Cellobiase produced by Fusariumoxysporum was higher, when compared to control.Maximum inhibition of above Cellulolytic enzymes (1, 4 endoglucanases, 1,4exoglucanase, Cellobiase) was shown by T. viride treatment wasfollowed by T. harzianum and P. fluorescens. Of all the treatments, T. viride treatment showed higher rate of inhibition of Cellulolytic enzymesof Fusarium oxysporum followed by that of T. harzianum and P. fluorescens.This present study indicates that culture filtrate of T.viride(1%)is the best biocontrol agent in the inhibition of Fusarium oxysporum causing Fusarium wilt of Arachis hypogaea .LDOI: http://dx.doi.org/10.3126/ijasbt.v3i1.12138    Int J Appl Sci Biotechnol, Vol. 3(1): 106-110 



2017 ◽  
Vol 14 (3) ◽  
pp. 1169-1176
Author(s):  
P. Rajeswari ◽  
Rupam Kapoor

ABSTRACT: Fusarium oxysporum causes Fusarium wilt of crop plants leads to considerable yield loss. The study was conducted to determine the beneficial effects of combining Trichoderma species and Pseudomonas fluorescens i.e Trichodema viride+ Pseudomonas fluorescens (Tv+Pf) (1+2%), Trichoderma harzianum+Pseudomonas fluorescens (Th+Pf) (1.5+2%), Trichoderma viride +Trichoderma harzianum (Tv+Th) (1+1.5%) on the activity of cellulolytic enzymes of Fusarium oxysporum to control Fusarium wilt of Arachis hypogaea. L wilt in vitro. The activity of 1,4 -β – Endoglucanase, 1,4 -β – Exoglucanase, Cellobiases produced by Fusarium oxysporum (Control) was higher. Maximum inhibition of Cellulolytic enzymes was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf) (1+2%), followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf) (1.5+2%) and Trichoderma viride + Trichoderma harzianum (Tv+Th) (1+1.5%). However, disease suppression of Fusarium wilt of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2%) was considerably better as compared to other two strains. At the same time the other two combinations resulted in enhanced disease suppression as compared to single strains. This indicates that the potential benefits of using combination treatments to suppress Fusarium wilt. The study suggests the significance of interactive effects of Trichoderma and Pseudomonas in biocontrol of wilt disease.



Author(s):  
Ridhdhi Rathore ◽  
Dinesh N. Vakharia ◽  
Dheeraj Singh Rathore

Abstract Land plants exist in close association with bacterial and fungal microbes, where some associations can be pathogenic and others can be mutualistic/beneficial. One such relation exists between host plant, Cuminum cyminum L. (Cumin) and Fusarium oxysporum f. sp. cumini (Foc), the causal pathogen of cumin wilt and Pseudomonas fluorescens (Pf), where Pf acts as a bio-agent for inhibiting Foc and promoting plant growth of cumin. In this study, antagonism by 10 different Pf isolates against Foc was studied under laboratory conditions through percent growth inhibition and biochemical mechanisms. Among these Pf isolates, Pf-5 exhibited the highest in vitro growth inhibition (82.51%). A positive correlation was observed between percent growth inhibition and specific activities of hydrolytic enzymes, chitinase, β-1, 3 glucanase, and protease, where a negative correlation was observed with cell wall degrading enzymes, cellulase and polygalacturonase. To conclude, isolate Pf-5 could be a potential biocontrol agent for Fusarium wilt disease of cumin.



Author(s):  
Wilson Ceiro-Catasú ◽  
Yusel Vega-González ◽  
María Taco-Sánchez ◽  
Ramiro Gaibor-Fernández ◽  
Oandis Sosa-Sánchez

Tobacco production is a key line in the Cuban economy and generates the largest income in the agricultural sector. Within phytopathogens affecting this plant, Fusarium spp., constitutes a pest of interest, due to vascular involvements that cause deterioration of the commercial value of the leaf. Therefore, the research was carried out with the aim of determining the antagonistic activity in vitro of native strains of Trichoderma harzianum and T. viride on isolates of Fusarium oxysporum and F. phyllophylum, from Nicotiana tabacum L. in Granma province, Cuba. The work was carried out at the Laboratory of Agricultural Microbiology, University of Granma. Half dextrose potato agar was prepared to establish the dual crops of Trichoderma spp. vs. Fusarium spp. Once the treatments were established and the incubation time had elapsed, the percentage inhibition of mycelial growth, antagonistic capacity and mycoparasitic activity was determined. A fully randomized design with four replicas per treatment was used and a two factorial ANOVA and Tukey test (p≤0.05) were used for statistical processing. It was shown that the strains of Trichoderma spp., recorded intermediate values of phytopathogenic inhibition, the competitiveness of the antagonist was mostly located in class two of the Bell scale and it was found that penetration, winding, vacuolization, deformation and granulation constitute the main forms of mycoparasitism. Which points to this biocontrol method as an alternative to consider for the management of Fusarium spp., in tobacco agroecosystems.



2010 ◽  
Vol 36 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Marinês Pereira Bomfim ◽  
Abel Rebouças São José ◽  
Tiyoko Nair Hojo Rebouças ◽  
Saulo Sousa de Almeida ◽  
Ivan Vilas Boas Souza ◽  
...  

Para estudar a potencialidade antagônica de espécies de Trichoderma spp. in vitro e in vivo a Rhizopus stolonifer, patógeno causador da podridão floral do maracujazeiro, foram estudadas as espécies de Trichoderma viride, T. virens, T. harzianum e T. stromaticum. O crescimento micelial do fitopatógeno foi realizado pelo teste do pareamento de culturas, para crescimento individual foram utilizadas cinco temperaturas. Avaliou-se também o crescimento micelial em 24h e 48h, avaliando a taxa de crescimento dos isolados. Na produção de metabolitos voláteis e não voláteis foram utilizados papel celofane e sobreposição de placas. Em condição de campo os frutos/planta foram tratados com a suspensão na concentração de 2 x 10(8) Conídios/mL sendo avaliado o número médio de frutos aos 15 e 30. No pareamento de cultura todos os isolados de Trichoderma spp. apresentaram crescimento micelial, impedindo o desenvolvimento do fitopatógeno, para todos os isolados as temperaturas ideais de crescimento foram de 25ºC e 30ºC. Nos períodos de incubação de 24 e 48h, foram constatadas diferenças significativas no crescimento micelial entre os isolados os antagonistas apresentaram velocidade de crescimento maior que o fitopatógeno. Houve uma produção de metabólitos voláteis e não voláteis de ação antifúngica ao R. stolonifer. No ensaio em campo houve diferença significativa entre os tratamentos, verificando-se que o melhor resultado entre os antagonistas em estudo cujos percentuais de pegamento foram 74% para os tratamentos Trichoderma harzianum e T. virens, e os tratamentos T. viride e T. stromaticum obtiveram um porcentual de 75% enquanto a testemunha obteve um percentual de 42%.



2019 ◽  
Vol 11 (1) ◽  
pp. 138-143 ◽  
Author(s):  
P. Rajeswari

Fusarium wilt caused by Fusarium oxysporum is a devastating disease of peanut. The fungus causes severe yield loss in groundnut. Combinations of biocontrol agents that are compatible with each other is a viable approach to control the plant disease. The study was conducted to determine the beneficiary aspects of  combining different species of Trichoderma and Pseudomonasfluorescens i.e Trichoderma viride+Pseudomonas fluorescens (Tv+Pf), Trichoderma harzianum+Pseudomonas fluorescens (Th+Pf) and Trichoderma viride +Trichoderma harzianum (Tv+Th) to control the Fusarium wilt  in  biochemicalparameters such as DNA, RNA, Amino nitrogen, phenols, dihydroxy and   proline  contents of Arachis hypogaea.L. Among the three combinations tested, Trichoderma viride + Pseudomonas fluorescens (1+2%) sprayed leaves provided greater suppression of Fusariumoxysporum by increasing the levels of DNA,RNA,Amino nitrogen contents resulting  in the suppression of  Fusarium wilt  disease of Arachis hypogaea L.Maximum  reduction of  DNA, RNA, Amino nitrogen was observed in the infected Fusariumoxysporumleaves Phenol, Dihydroxy phenols and proline contents increase sharply in the treated plants treated with (Tv+Pf) as compared to the control plants. At the same time the other two combinations resulted in  enhanced control  in  comparison with  individual ones. This present study indicates that specific combination of Trichoderma viride and Pseudomonas fluorescens could have the greater efficacy in the inhibition of pathogen  in the biocontrol of Fusarium wilt  disease  as   compared   with   individual strains.



2016 ◽  
Vol 8 (2) ◽  
pp. 1100-1109 ◽  
Author(s):  
Anita Puyam

Trichoderma spp are free living filamentous fungi. They are cosmopolitan and versatile in nature. They have the potential to produce several enzymes that can degrade the cell wall materials. Also, they release a number of fungi toxic substances that can inhibit the growth of the fungal pathogens. Many mechanisms have been described on how Trichoderma exert beneficial effects on plants as a bio-control agent. But due to its versatile nature, its potential cannot be explored to its full extent. And it is a developing science in the field of bio-control with its new discoveries adding to the usefulness of the fungi as a bio-control agent. Its development as a bio-control agent passes through many phases and each phase adding novel ideas that will help in the development of an efficient bio-agent which in turn will help in the crop improvement and disease management. The studies on their various aspects responsible for bio-control will open a flood gate to the development of Trichoderma as an efficient and reliable bio-agent and provide a better scope for implementation in crop and disease management. The in vitro antagonistic activity of Trichoderma viride against phytopathogens (Sclerotium rolfsii, Fusarium oxysporum f.s.p. ciceri, Fusarium oxysporum f.s.p. udum) was studied and it was found to be potentially effective against F. oxysporum f.s.p. ciceri followed by F. oxysporum f.s.p. udum and Sclerotium rolfsii.



2012 ◽  
Vol 13 (3) ◽  
pp. 220
Author(s):  
Nurbailis Nurbailis ◽  
Martinius Martinius

The purpose of the research was to obtain the superior Trichoderma that had ability to colonize root with the resultbeing effective to supress Fusarium wilt desease and promote banana seedling growth. This experiment consistedof 2 factors and 4 replications. The first factor was Trichoderma spp. namely : A. Trichoderma koningii strain S6sh(TK-S6sh), B Trichoderma viride strain T1sk (TV-T1sk) and Trichoderma harzianum strain S10sh (TH-S10sh). Thesecond factor was the kind of banana namely a.Cavendis, b. Barangan and c. Kepok. The observation werecolonization ability, Fusarium wilt desease development and the banana seedling growth. The result showed thatTV-T1sk was the best spesies to colonize all banana seedling root. The highest colonization in Barangan bananaseedling root reached 80%. Trichoderma colonization in banana seedling root could suppress Fusarium wilt diseasedevelopment and increase banana seedling weight. Higher ability of Trichoderma to colonize banana seedling rootcaused lower disease incidence of Fusarium wilt and greater biomass of banana seedling. Interaction betweenTV-T1Sk and Barangan banana was the best in colonization, so they were effective to suppress Fusarium wiltdesease and increase banana seedling biomass.



2013 ◽  
Vol 32 (2) ◽  
pp. 83
Author(s):  
Budi Setyawan ◽  
Soekirman Pawirosoemardjo ◽  
Hananto Hadi

Penyakit jamur akar putih yang disebabkan oleh jamur Rigidoporus microporus merupakan salah satu penyakit penting pada tanaman karet di Indonesia, baik di perkebunan besar maupun rakyat. Kerugian secara finansial akibat penyakit ini sangat tinggi terutama di perkebunan karet rakyat. Pengendalian yang disarankan untuk penyakit ini adalah dengan pengendalian terpadu yaitu integrasi beberapa teknik pengendalian seperti pembongkaran tunggul, tanaman penutup tanah kacangan, seleksi bahan tanam, tanaman antagonis, biofungisida serta fungisida kimia yang diaplikasikan secara bijak. Hasil pengendalian pada umumnya masih belum memuaskan karena beberapa kendala teknis maupun non-teknis. Salah satu kendala yang cukup mengganggu yaitu mahalnya biaya, terutama bagi pekebun karet rakyat. Sebagai salah satu unsur dalam pengendalian terpadu, pengendalian secara biologi merupakan metode yang berpotensi besar. Pengendalian biologi menggunakan Trichoderma sp. sudah digunakan secara luas dan terbukti efektivitasnya. Cara tersebut tidak hanya efektif sebagai upaya preventif, tetapi juga murah, mudah diaplikasikan, dan ramah terhadap lingkungan. Triko Combi merupakan biofungisida semi-komersial yang diformulasi Balai Penelitian Getas dan memiliki empat jenis bahan aktif, yaitu Trichoderma viride, Trichoderma koningii, Trichoderma harzianum dan satu strain lokal Trichoderma sp. Pada percobaan dengan infeksi buatan Rigidoporus microporus di pembibitan polibeg menunjukkan adanya penekanan intensitas penyakit oleh perlakuan kombinasi empat jenis Trichoderma spp. tersebut dibandingkan bibit tanpa perlakuan, maupun bibit dengan aplikasi fungisida kimia. Hasil yang signifikan juga diperoleh melalui pengujian penghambatan langsung miselium Rigidoporus microporus secara in-vitro di laboratorium.



2015 ◽  
Vol 39 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Daniele Franco Martins Machado ◽  
Antonio Padilha Tavares ◽  
Sidinei José Lopes ◽  
Antonio Carlos Ferreira da Silva

Neste trabalho, o objetivo foi avaliar o efeito de isolados de Trichoderma spp. na emergência de plântulas e no crescimento de mudas de cambará (Gochnatia polymorpha). Utilizou-se, em casa de vegetação, substrato esterilizado e não esterilizado, sendo avaliados os efeitos de quatro isolados de trichoderma: TSM1 e TSM2 de Trichoderma viride, 2B2 e 2B22 de Trichoderma harzianum mais um mix preparado com a mistura desses quatro isolados, além de dois produtos comerciais à base de trichoderma. A análise dos dados permitiu concluir que os isolados de trichoderma testados não interferem na emergência das plântulas, mas os isolados 2B2 e 2B22 de T. harzianum apresentam potenciais como promotores de crescimento de mudas de cambará.



Sign in / Sign up

Export Citation Format

Share Document