scholarly journals Biomedical Prediction of Radial Size of Powdered Element using Artificial Neural Network

2018 ◽  
Vol 11 (3) ◽  
pp. 1593-1602
Author(s):  
Yaagyanika Gehlot ◽  
Bhairvi Sharma ◽  
P. Muthu ◽  
Hariharan Muthusamy ◽  
S. Latha

Silver nitrous aqueous solution is used to biosynthesize Silver nanoparticles (Ag-NPs) through a green and easy way using tuber powder extracts of Curcuma Longa (C. longa). The aim is to model an Artificial Neural Network (ANN) using seven existing algorithms in MATLAB for forecasting the size of the silver nanoparticle with volume of both C. longa extraction and AgNO3, time of stirring and temperature of reaction as input functions. Several techniques including Quasi-Newton, Conjugate Gradient and Levenberg-Maquardt are employed for training the designed ANN model, a feed-forward backpropagation network with different combinations of architecture and transfer functions. Each algorithm is fashioned to obtain the best performance by calculating the Regression (R), Mean Square Error (MSE), Mean Absolute Error (MAE) and Error Sum of Squares (SSE), thereby comparing the results and propounding the optimum algorithm technique for the discussed application in nanoengineering. Finally, based on the findings, the optimum network is proposed through the simulation results.

2018 ◽  
Vol 65 ◽  
pp. 05004
Author(s):  
Augustine Chioma Affam ◽  
Malay Chaudhuri ◽  
Chee Chung Wong ◽  
Chee Swee Wong

The study examined artificial neural network (ANN) modeling for the prediction of chlorpyrifos, cypermethrin and chlorothalonil pesticides degradation by the FeGAC/H2O2 process. The operating condition was the optimum condition from a series of experiments. Under these conditions; FeGAC 5 g/L, H2O2 concentration 100 mg/L, pH 3 and 60 min reaction time, the COD removal obtained was 96.19%. The ANN model was developed using a three-layer multilayer perceptron (MLP) neural network to predict pesticide degradation in terms of COD removal. The configuration of the model with the smallest mean square error (MSE) of 0.000046 contained 5 inputs, 9 hidden and, 1 output neuron. The Levenberg–Marquardt backpropagation training algorithm was used for training the network, while tangent sigmoid and linear transfer functions were used at the hidden and output neurons, respectively. The predicted results were in close agreement with the experimental results with correlation coefficient (R2) of 0.9994 i.e. 99.94% showing a close agreement to the actual experimental results. The sensitivity analysis showed that FeGAC dose had the highest influence with relative importance of 25.33%. The results show how robust the ANN model could be in the prediction of the behavior of the FeGAC/H2O2 process.


2012 ◽  
Vol 170-173 ◽  
pp. 1013-1016
Author(s):  
Fu Qiang Gao ◽  
Xiao Qiang Wang

Prediction of peak particle velocity (PPV) is very complicated due to the number of influencing parameters affecting seism wave propagation. In this paper, artificial neural network (ANN) is implemented to develop a model to predict PPV in a blasting operation. Based on the measured parameters of maximum explosive charge used per delay and distance between blast face to monitoring point, a three-layer ANN was found to be optimum with architecture 2-5-1. Through the analysis of coefficient of determination (CoD) and mean absolute error (MAE) between monitored and predicted values of PPV, it indicates that the forecast data by the ANN model is close to the actua1 values.


Author(s):  
Thai Binh Pham ◽  
Sushant K. Singh ◽  
Hai-Bang Ly

Soil Coefficient of Consolidation (Cv) is a crucial mechanical parameter and used to characterize whether the soil undergoes consolidation or compaction when subjected to pressure. In order to define such a parameter, the experimental approaches are costly, time-consuming, and required appropriate equipment to perform the tests. In this study, the development of an alternative manner to estimate the Cv, based on Artificial Neural Network (ANN), was conducted. A database containing 188 tests was used to develop the ANN model. Two structures of ANN were considered, and the accuracy of each model was assessed using common statistical measurements such as the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). In performing 600 simulations in each case, the ANN structure containing 14 neurons was statistically superior to the other one. Finally, a typical ANN result was presented to prove that it can be an excellent predictor of the problem, with a satisfying accuracy performance that yielded of RMSE = 0.0614, MAE = 0.0415, and R2 = 0.99727. This study might help in quick and accurate prediction of the Cv used in civil engineering problems.


Author(s):  
Thai Binh Pham ◽  
Sushant K. Singh ◽  
Hai-Bang Ly

Soil Coefficient of Consolidation (Cv) is a crucial mechanical parameter and used to characterize whether the soil undergoes consolidation or compaction when subjected to pressure. In order to define such a parameter, the experimental approaches are costly, time-consuming, and required appropriate equipment to perform the tests. In this study, the development of an alternative manner to estimate the Cv, based on Artificial Neural Network (ANN), was conducted. A database containing 188 tests was used to develop the ANN model. Two structures of ANN were considered, and the accuracy of each model was assessed using common statistical measurements such as the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). In performing 600 simulations in each case, the ANN structure containing 14 neurons was statistically superior to the other one. Finally, a typical ANN result was presented to prove that it can be an excellent predictor of the problem, with a satisfying accuracy performance that yielded of RMSE = 0.0614, MAE = 0.0415, and R2 = 0.99727. This study might help in quick and accurate prediction of the Cv used in civil engineering problems.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2021 ◽  
Vol 5 (2) ◽  
pp. 109-118
Author(s):  
Euis Saraswati ◽  
Yuyun Umaidah ◽  
Apriade Voutama

Coronavirus disease (Covid-19) or commonly called coronavirus. This virus spreads very quickly and even almost infects the whole world, including Indonesia. A large number of cases and the rapid spread of this virus make people worry and even fear the increasing spread of the Covid-19 virus. Information about this virus has also been spread on various social media, one of which is Twitter. Various public opinions regarding the Covid-19 virus are also widely expressed on Twitter. Opinions on a tweet contain positive or negative sentiments. Sentiments of sentiment contained in a tweet can be used as material for consideration and evaluation for the government in dealing with the Covid-19 virus. Based on these problems, a sentiment analysis classification is needed to find out public opinion on the Covid-19 virus. This research uses Artificial Neural Network (ANN) algorithm with the Backpropagation method. The results of this test get 88.62% accuracy, 91.5% precision, and 95.73% recall. The results obtained show that the ANN model is quite good for classifying text mining.


Author(s):  
Ana Maria Mihaela Gherman ◽  
Katalin Kovács ◽  
Mircea Vasile Cristea ◽  
Valer Tosa

In this work we present the results obtained with an artificial neural network (ANN) which we trained to predict the expected output of high-order harmonic generation (HHG) process, while exploring a multi-dimensional parameter space. We argue on the utility and efficiency of the ANN model and demonstrate its ability to predict the outcome of HHG simulations. In this case study we present the results for a loose focusing HHG beamline, where the changing parameters are: the laser pulse energy, gas pressure, gas cell position relative to focus and gas cell length. The physical quantity which we predict here using ANN is directly related to the total harmonic yield in a specified spectral domain (20-40 eV). We discuss the versatility and adaptability of the presented method.


Sign in / Sign up

Export Citation Format

Share Document