The Hydraulics of an Automated Furrow Irrigation System with Rectangular Side Weir Outlets

1970 ◽  
Vol 13 (6) ◽  
pp. 0746-0751 ◽  
Author(s):  
John M. Sweeten and James E. Garton
2013 ◽  
Author(s):  
Roberto Vieira Pordeus ◽  
Carlos Alberto Vieira de Azevedo ◽  
Luiz Antonio Dantas ◽  
Vera Lucia Antunes de Lima ◽  
José Dantas Neto ◽  
...  

Author(s):  
Ligalem Agegn Asres

Background: For better water resources management in the areas of water shortage for crop production, deficit irrigation is very important. The understanding of the yield response factor to water deficit is crucial for efficient irrigation water management. Deficit irrigation for studying yield response factors is always practiced in the way of stressing the demand of the crops. The present study was done for the determination of the seasonal yield response factor of red Bombay onion variety under Arba Minch agro climate condition. Furthermore, it also examined the effect of furrow irrigation systems on the seasonal yield response factor. Methods: The experiment was conducted from August to November 2019. The experiment had six treatments, which were the combination of two furrow irrigation systems and three irrigation levels. Data were collected for soil moisture before and after each irrigation and bulb yield. The seasonal yield response factors were determined through simple linear regressions using SPSS software. Result: When considering the furrow irrigation system as a factor, the seasonal yield response factor for alternate furrow irrigation system was 1.18 while for paired row furrow irrigation system was 1.07. This red Bombay variety of onion clearly shows more sensitive to water stress for alternative furrow irrigation systems than paired row furrow irrigation systems. Therefore, in the area of water shortage paired row furrow irrigation system is better than alternate furrow irrigation system. The seasonal yield response factor as a wall for red Bombay onion variety in Arba Minch agro-ecological condition was 1.12. Therefore, the red Bombay onion variety in Arba Minch agroclimate condition was sensitive to water stress.


2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Ahmed Raza ◽  
Imtiaz A. Warraich ◽  
Muhammad A. Nawaz ◽  
Muhammad Asim ◽  
Abdul Aziz ◽  
...  

In Pakistan, orchards are irrigated using flood irrigation system that is considered sub-economical regarding water use efficiency. Considering the importance of natural water resources, there was a need to devise the method of applying irrigation water that would save water consumption, environmentally friendly and easily adopted by the growers. Thus, a research trial was conducted at Citrus Research Institute, Sargodha, Pakistan on 0.41 ha area of Kinnow mandarin. The total area was divided into two parts, half of the area was used for furrow irrigation system and the remaining half was used for flood irrigation system. Tensiometers were installed in the soil in furrow and flood irrigation system to assess the moisture condition in the soil. Irrigations were applied when tensiometer readings reached 40 centibars. The quantity of water used for irrigation was measured with a flume meter and then percentage of water saving was calculated. The study revealed that furrow irrigation system significantly improved the number of fruits per tree (1153), fruit yield (179.89 kg per plant) and juice percentage (48.38%) compared with flood irrigation system where the number of fruits per tree were711, fruit yield was 110.61 kg per plant and juice percentage was 46.31%. However, TSS/acidity ratio, and peel and rag percentage were not affected by the different irrigation systems. In furrow irrigation system 24 irrigations were applied per year with average water saving of 46.14% and water use efficiency (WUE) was 4.58 kg m-3 whereas in flood irrigation system average numbers of irrigations were 15 per year and WUE was 2.34 kg m-3only. Therefore, furrow irrigation system is recommended for the citrus growers to improve the water use efficiency, yield and fruit quality of Kinnow mandarin.


2004 ◽  
Vol 50 (2) ◽  
pp. 61-68 ◽  
Author(s):  
C. Choi ◽  
I. Song ◽  
S. Stine ◽  
J. Pimentel ◽  
C. Gerba

Two different irrigation systems, subsurface drip irrigation and furrow irrigation, are tested to investigate the level of viral contamination and survival when tertiary effluent is used in arid and semi-arid regions. The effluent was injected with bacteriophages of PRD1 and MS2. A greater number of PRD1 and MS2 were recovered from the lettuce in the subsurface drip-irrigated plots as compared to those in the furrow-irrigated plots. Shallow drip tape installation and preferential water paths through cracks on the soil surface appeared to be the main causes of high viral contamination in subsurface drip irrigation plots, which led to the direct contact of the lettuce stems with the irrigation water which penetrated the soil surface. The water use efficiency of the subsurface drip irrigation system was higher than that of the furrow irrigation system. Thus, subsurface drip irrigation is an efficient irrigation method for vegetable crops in arid and semi-arid regions if viral contamination can be reduced. Deeper installation of drip tapes, frequent irrigations, and timely harvests based on cumulative heat units may further reduce health risks by ensuring viral die-off under various field conditions.


2010 ◽  
Vol 5 (No. 3) ◽  
pp. 75-87 ◽  
Author(s):  
A.M. Amer ◽  
K.H. Amer

Water infiltration and storage under surface irrigation are evaluated, based on the initial soil water content and inflow rate as well as on the irrigation parameters and efficiencies. For that purpose, a field experiment was conducted using fruitful grape grown in alluvial clay soil at Shebin El-Kom in 2008 grape season. To evaluate the water storage and distribution under partially wetted furrow irrigation in comparison to the traditional border irrigation as a control method, two irrigation treatments were applied. They are known as wet (WT) and dry (DT) treatments, at which water was applied when the available soil water (ASW) reached 65% and 50%, respectively. The coefficient of variation (CV) was 6.2 and 10.2% for WT and DT respectively under the furrow irrigation system as compared to 8.5% in border. Water was deeply percolated as 11.9 and 18.9% for wet and dry furrow treatments respectively, as compared with 11.1% for control with no deficit. The application efficiency achieved was 86.2% for wet furrow irrigation achieving a high grape yield (30.7 t/ha). The relation between the infiltration (cumulative depth, Z and rate, I) and opportunity time (t<sub>0</sub>) in minutes for WT and DT treatments was: Z<sub>WT</sub> = 0.528 t<sub>0</sub><sup>0.6</sup>, Z<sub>DT</sub> = 1.2 t<sub>0</sub><sup>0.501</sup>, I<sub>WT</sub> = 19 t<sub>0</sub><sup>&ndash;0.4</sup>, I<sub>DT</sub> = 36 t<sub>0</sub><sup>&ndash;0.498</sup>. Also, empirical power form equations were obtained for the measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion, and recession.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2229
Author(s):  
Wenzhu Yang ◽  
Yan Jiao ◽  
Mingde Yang ◽  
Huiyang Wen ◽  
Peng Gu ◽  
...  

Irrigation water is limiting for crop production in arid areas and application rates of fertilizers often exceed crop requirements, resulting in high accumulation of nitrate nitrogen (NO3−-N) in the soil. Management practices play a significant role in the leaching of NO3−-N. This experiment compares the effects of traditional furrow irrigation and sprinkler fertigation on the soil NO3−-N concentration trend throughout the cropping season in potato fields in China. Two irrigation systems that were fertilized, namely by furrow (NF-FI) and sprinkler fertigation (NF-SI), and two controlling without any fertilizer (C-FI and C-SI) were tested in the same experimental site for three consecutive years. Both the NF-FI soils and NF-SI soils with three replications and fertilizer applications of 273 kg N ha−1 exhibited a different trend of NO3−-N accumulation at different depths of soil profile. However, the magnitude of NO3−-N accumulation was low in the NF-SI soil profile. In NF-SI treatments, higher NO3−-N was observed at 20–40 cm soil layer. In the NF-FI, the concentration of the highest nitrate was observed at the 40–120 cm soil layer. The concentrations of NO3−-N in the fertilized soil were higher than those of the control soil for each irrigation system. Residual levels of NO3−-N in the soil depth of 40–120 cm from NF-FI were 1.54, 3.45 and 5.28 times higher than NF-SI after harvesting potatoes from 2015 to 2017. In NF-FI treatments, apparent nitrogen loss was 234.7, 237.5 and 276.7 kg ha−1 after harvesting potatoes in 2015, 2016 and 2017. Meanwhile, apparent nitrogen loss from NF-SI treatments was only 161.9, 132.1 and 148.9 kg ha−1, which was 31.0%, 44.4% and 46.2% lower than that of NF-FI in 2015, 2016 and 2017, respectively. The risk of NO3−-N leaching below the root zone from NF-FI was higher than that from NF-SI. It has been demonstrated that sprinkler fertigation can also be used as a tool for mitigating NO3−-N accumulation and apparent nitrogen loss.


Sign in / Sign up

Export Citation Format

Share Document