Evaluation of Shearing Rolls for Hulling Confectionary Sunflower Seed for Precision Planting

2014 ◽  
pp. 943-950
2020 ◽  
Author(s):  
Jarrad R Prasifka ◽  
Beth Ferguson ◽  
James V Anderson

Abstract The red sunflower seed weevil, Smicronyx fulvus L., is a univoltine seed-feeding pest of cultivated sunflower, Helianthus annuus L. Artificial infestations of S. fulvus onto sunflowers with traditional (<25% oleic acid), mid-oleic (55–75%), or high oleic (>80%) fatty acid profiles were used to test if fatty acids could be used as natural markers to estimate the proportion of weevils developing on oilseed sunflowers rather than wild Helianthus spp. and confection (non-oil) types. Oleic acid (%) in S. fulvus confirmed the fatty acid compositions of mature larvae and weevil adults reflected their diets, making primary (oleic or linoleic) fatty acids feasible as natural markers for this crop-insect combination. Oleic acid in wild S. fulvus populations in North Dakota suggests at least 84 and 90% of adults originated from mid-oleic or high oleic sunflower hybrids in 2017 and 2018, respectively. Surveys in 2017 (n = 156 fields) and 2019 (n = 120 fields) extended information provided by S. fulvus fatty acid data; no significant spatial patterns of S. fulvus damage were detected in samples, damage to oilseed sunflowers was greater than confection (non-oil) types, and the majority of damage occurred in ≈10% of surveyed fields. Combined, data suggest a few unmanaged or mismanaged oilseed sunflower fields are responsible for producing most S. fulvus in an area. Improved management seems possible with a combination of grower education and expanded use of non-insecticidal tactics, including cultural practices and S. fulvus-resistant hybrids.


2009 ◽  
Vol 2 (1) ◽  
pp. 31-34 ◽  
Author(s):  
G. Diaz ◽  
M. Lozano ◽  
A. Acuña

A total of 57 samples of feedstuffs commonly used for animal nutrition in Colombia (maize, soybean, sorghum, cottonseed meal, sunflower seed meal, wheat middlings and rice) were analysed for Aspergillus contamination. Aspergillus fungi were identified at species level and their ability to produce aflatoxins was determined by highperformance liquid chromatography. A total of 31 of the feedstuffs analysed (54.4%) were found to contain Aspergillus spp. The most contaminated substrate was maize (100%) followed by cottonseed meal (80%), sorghum (60%) and wheat middlings (60%). Soybean showed lower levels of contamination (10%). No Aspergillus spp. could be isolated from rice or sunflower seed meal. Total Aspergillus strains isolated were 50, with 28 belonging to section Flavi (56%), 17 to section Nigri (34%), 4 to section Circumdati (8%) and 1 to section Fumigati (2%). Among section Flavi, 17 isolates were identified as A. flavus, seven as A. parasiticus, two as A. oryzae and two as A. tamarii. Production of aflatoxins by Aspergillus section Flavi was screened by liquid chromatography. About three quarters of the A. flavus strains (76.5%) produced aflatoxin B1 (0.2 to 240.4 µg/g) and aflatoxin B2 (0.2 to 1.6 µg/g), while all A. parasiticus strains produced the four naturally occurring aflatoxins (aflatoxin B1 from 0.6 to 83.5 µg/g, aflatoxin B2 from 0.3 to 4.8 µg/g, aflatoxin G1 from 0.4 to 19.3 µg/g and aflatoxin G2 from 0.1 to 1.0 µg/g). This is the first study demonstrating the presence of highly toxigenic Aspergillus fungi in Colombian animal feedstuffs.


Ionics ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 1025-1039
Author(s):  
Yi Li ◽  
Hechang Shi ◽  
Ce Liang ◽  
Kaifeng Yu

Author(s):  
Amir Sadeghpour ◽  
Oladapo Adeyemi ◽  
Dane Hunter ◽  
Yuan Luo ◽  
Shalamar Armstrong

Abstract Growing winter cereal rye (Secale cereale) (WCR) has been identified as an effective in-field practice to reduce nitrate-N and phosphorus (P) losses to Upper Mississippi River Basin, USA. In the Midwestern USA, growers are reluctant to plant WCR especially prior to corn (Zea mays L.) due to N immobilization and establishment issues. Precision planting of WCR or ‘skipping the corn row’ (STCR) can minimize some issues associated with WCR ahead of corn while reducing cover crop seed costs. The objective of this study was to compare the effectiveness of ‘STCR’ vs normal planting of WCR at full seeding rate (NP) on WCR biomass, nutrient uptake and composition in three site-yrs (ARC2019, ARC2020, BRC2020). Our results indicated no differences in cover crop dry matter biomass production between the STCR (2.40 Mg ha−1) and NP (2.41 Mg ha−1) supported by similar normalized difference vegetative index and plant height for both treatments. Phosphorus, potassium (K), calcium (Ca) and magnesium (Mg) accumulation in aboveground biomass was only influenced by site-yr and both STCR and NP removed similar amount of P, K, Ca and Mg indicating STCR could be as effective as NP in accumulating nutrients. Aboveground carbon (C) content (1086.26 kg h−1 average over the two treatments) was similar between the two treatments and only influenced by site-yr differences. Lignin, lignin:N and C:N ratios were higher in STCR than NP in one out of three site-yrs (ARC2019) indicating greater chance of N immobilization when WCR was planted later than usual. Implementing STCR saved $8.4 ha−1 for growers and could incentivize growers to adopt this practice. Future research should evaluate corn response to STCR compared with NP and assess if soil quality declines by STCR practice over time.


Sign in / Sign up

Export Citation Format

Share Document