Spray Tip Configurations with Pulse-Width Modulation for Glufosinate-Ammonium Deposits in Palmer Amaranth (Amaranthus palmeri)

2017 ◽  
Vol 60 (4) ◽  
pp. 1123-1136 ◽  
Author(s):  
Alvin Ray Womac ◽  
Galina Melnichenko ◽  
Larry Steckel ◽  
Garrett Montgomery ◽  
Julie Reeves ◽  
...  

Abstract. A commercial sprayer operated at a field speed of 24 km h-1 simultaneously applied glufosinate-ammonium through seven spray tip treatments spaced along a 30.5 m boom for measured foliar deposits of herbicide in 35 cm tall Palmer amaranth weeds and spray deposits on foliar-mounted water-sensitive paper (WSP). The experiment followed one that found increased herbicide deposits for dual tips with an adjacent, fore-aft mount, downward-pointed pre-orifice tip (Extremely Coarse) operated with blended pulse-width modulation (bPWM) and a pre-orifice tip (Fine) operated constant (non-bPWM) under moderate ambient wind velocities from 3.1 to 4.1 m s-1. Additional dual-tip treatments were added to the dual-tip configuration for the current experiment to expand droplet Coarseness and to add dual tips operated constant to isolate bPWM effects. Tested treatments in common with the previous experiment included the original dual-tip bPWM and non-bPWM combination, Y-adapter fore-aft-mounted pre-orifice tips with diverging spray patterns both operated bPWM, and an air-induction extended-range tip operated constant. Palmer amaranth weeds, total spray volume rate of 93.5 L ha-1, sprayer speed of 24 km h-1, and test methods were similar between studies, except for negligible wind in the current experiment. Conditions were clear and sunny during spraying without indicators of a stable atmosphere. Overall mean glufosinate-ammonium deposits recovered from leaves were greatest for dual-tips operated constant at reduced droplet size (Very Coarse and Fine) due to reduced required tip size operated without bPWM, and for increased droplet size for Y-adapter-mounted pre-orifice tips (Extremely Coarse and Coarse) operated with bPWM, resulting in overall mean glufosinate-ammonium leaf deposits of 15.9 and 15.0 µg a.i. cm-2, respectively. The combination of dual tips at reduced droplet size or the Y-adapter fore-aft spray pattern divergence of bPWM tips coupled with high sprayer speed enhanced droplet interception by Palmer amaranth plants under negligible wind conditions, since the collected deposits, even without summed integration over foliage height, significantly exceeded the applied rate of 8.2 µg a.i. cm-2. An air-induction extended-range tip non-bPWM (Very Coarse) provided the next highest mean in overall glufosinate-ammonium deposit. One increased-droplet size dual-tip, pre-orifice tip bPWM and non-bPWM (Ultra Coarse and Coarse) resulted in a mean deposit that was not significantly different from the air-induction extended-range tip operated non-bPWM. Other dual-tip combinations with bPWM and non-bPWM, including the original dual-tip configuration in the previous study, resulted in significantly reduced mean herbicide deposits. Considering all tested tips, advantages of bPWM depended on spray tip droplet size classifications and Y-mounted fore-aft divergence of spray patterns. Overall mean WSP spot deposits were greatest for reduced droplet size (Very Coarse and Fine) dual pre-orifice tips operated non-bPWM, corresponding with the highest numerical overall mean of glufosinate-ammonium deposit. This correspondence of highest spot deposits and highest mean glufosinate-ammonium deposit also occurred in the previous study. Increased Palmer amaranth control correlated with increased glufosinate-ammonium deposit and decreased volume median diameter (Dv0.5) determined with WSP electronic scans, with the air-induction extended-range tip operated constant and the Y-adapter pre-orifice tip operated as bPWM providing the highest weed control. Overall mean WSP spot deposits ranged from 42.3 to 81.1 spots cm-2, compared to 14.0 to 47.0 spots cm-2 previously reported for similar spray conditions, with spot deposits attributed to negligible wind versus wind, respectively. Thus, the spray environment, particularly wind, exhibited effects on nozzle tip comparisons for foliar deposition and may offer some rationale for the conflicting published data beyond the examined treatments. Keywords: Application technology, Blended pulse-width modulation, Herbicide, Herbicide resistance, Nozzle, Spray deposition, Water-sensitive paper, Weed.

2019 ◽  
Vol 178 ◽  
pp. 52-69 ◽  
Author(s):  
Thomas R. Butts ◽  
Liberty E. Butts ◽  
Joe D. Luck ◽  
Bradley K. Fritz ◽  
Wesley C. Hoffmann ◽  
...  

2019 ◽  
Vol 34 (3) ◽  
pp. 416-423
Author(s):  
Lucas X. Franca ◽  
Darrin M. Dodds ◽  
Thomas R. Butts ◽  
Greg R. Kruger ◽  
Daniel B. Reynolds ◽  
...  

AbstractHerbicide applications performed with pulse width modulation (PWM) sprayers to deliver specific spray droplet sizes could maintain product efficacy, minimize potential off-target movement, and increase flexibility in field operations. Given the continuous expansion of herbicide-resistant Palmer amaranth populations across the southern and midwestern United States, efficacious and cost-effective means of application are needed to maximize Palmer amaranth control. Experiments were conducted in two locations in Mississippi (2016, 2017, and 2018) and one location in Nebraska (2016 and 2017) for a total of 7 site-years. The objective of this study was to evaluate the influence of a range of spray droplet sizes [150 (Fine) to 900 μm (Ultra Coarse)] on lactofen and acifluorfen efficacy for Palmer amaranth control. The results of this research indicated that spray droplet size did not influence lactofen efficacy on Palmer amaranth. Palmer amaranth control and percent dry-biomass reduction remained consistent with lactofen applied within the aforementioned droplet size range. Therefore, larger spray droplets should be used as part of a drift mitigation approach. In contrast, acifluorfen application with 300-μm (Medium) spray droplets provided the greatest Palmer amaranth control. Although percent biomass reduction was numerically greater with 300-μm (Medium) droplets, results did not differ with respect to spray droplet size, possibly as a result of initial plant injury, causing weight loss, followed by regrowth. Overall, 900-μm (Ultra Coarse) droplets could be used effectively without compromising lactofen efficacy on Palmer amaranth, and 300-μm (Medium) droplets should be used to achieve maximum Palmer amaranth control with acifluorfen.


2021 ◽  
pp. 1-32
Author(s):  
Grant L Priess ◽  
Jason K Norsworthy ◽  
Rodger B Farr ◽  
Andy Mauromoustakos ◽  
Thomas R Butts ◽  
...  

Abstract In current and next-generation weed control technologies, sequential applications of contact and systemic herbicides for POST control of troublesome weeds are needed to mitigate the evolution of herbicide resistance. A clear understanding of the impact auxin herbicide symptomology has on Palmer amaranth groundcover will aid optimization of sequential herbicide applications. Field and greenhouse experiments were conducted in Fayetteville, AR and a laboratory experiment was conducted in Lonoke, AR, in 2020 to evaluate changes in Palmer amaranth groundcover following an application of 2,4-D and dicamba with various nozzles, droplet sizes, and velocities. Field experiments utilized three nozzles: Extended Range (XR), Air Induction Extended Range (AIXR), and Turbo TeeJet Induction (TTI), to assess the effect of spray droplet size on changes in Palmer amaranth groundcover. Nozzle did not affect Palmer amaranth groundcover when dicamba was applied. However, nozzle selection did impact groundcover when 2,4-D was applied; the following nozzle order XR>AIXR>TTI reduced Palmer amaranth groundcover the greatest in both site-years of the field experiment. This result (XR>AIXR> TTI) matches percent spray coverage data for 2,4-D and is inversely related to spray droplet size data. Rapid reductions of Palmer amaranth groundcover from 100% at time zero to 39.4 to 64.1% and 60.0 to 85.8% were observed 180 minutes after application in greenhouse and field experiments, respectively, regardless of herbicide or nozzle. In one site-year of the greenhouse and field experiments, regrowth of Palmer amaranth occurred 10080 minutes (14 days) after an application of either 2,4-D or dicamba to larger than labeled weeds. In all experiments, complete reduction of live Palmer amaranth tissue was not observed 21 days after application with any herbicide or nozzle combination. Control of Palmer amaranth escapes with reduced groundcover may potentially lead to increased selection pressure on sequentially applied herbicides due to a reduction in spray solution contact with the targeted pest.


2020 ◽  
Author(s):  
Jonathan V. Fabula ◽  
Ajay Sharda ◽  
Daniel Flippo ◽  
Ignacio Ciampitti ◽  
Qing Kang

2019 ◽  
Vol 111 (3) ◽  
pp. 1425-1432
Author(s):  
Thomas R. Butts ◽  
Chase A. Samples ◽  
Lucas X. Franca ◽  
Darrin M. Dodds ◽  
Daniel B. Reynolds ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 44-74
Author(s):  
Blake Troise

The 1-bit sonic environment (perhaps most famously musically employed on the ZX Spectrum) is defined by extreme limitation. Yet, belying these restrictions, there is a surprisingly expressive instrumental versatility. This article explores the theory behind the primary, idiosyncratically 1-bit techniques available to the composer-programmer, those that are essential when designing “instruments” in 1-bit environments. These techniques include pulse width modulation for timbral manipulation and means of generating virtual polyphony in software, such as the pin pulse and pulse interleaving techniques. These methodologies are considered in respect to their compositional implications and instrumental applications.


2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document