Impact of Auxin Herbicides on Palmer amaranth Groundcover

2021 ◽  
pp. 1-32
Author(s):  
Grant L Priess ◽  
Jason K Norsworthy ◽  
Rodger B Farr ◽  
Andy Mauromoustakos ◽  
Thomas R Butts ◽  
...  

Abstract In current and next-generation weed control technologies, sequential applications of contact and systemic herbicides for POST control of troublesome weeds are needed to mitigate the evolution of herbicide resistance. A clear understanding of the impact auxin herbicide symptomology has on Palmer amaranth groundcover will aid optimization of sequential herbicide applications. Field and greenhouse experiments were conducted in Fayetteville, AR and a laboratory experiment was conducted in Lonoke, AR, in 2020 to evaluate changes in Palmer amaranth groundcover following an application of 2,4-D and dicamba with various nozzles, droplet sizes, and velocities. Field experiments utilized three nozzles: Extended Range (XR), Air Induction Extended Range (AIXR), and Turbo TeeJet Induction (TTI), to assess the effect of spray droplet size on changes in Palmer amaranth groundcover. Nozzle did not affect Palmer amaranth groundcover when dicamba was applied. However, nozzle selection did impact groundcover when 2,4-D was applied; the following nozzle order XR>AIXR>TTI reduced Palmer amaranth groundcover the greatest in both site-years of the field experiment. This result (XR>AIXR> TTI) matches percent spray coverage data for 2,4-D and is inversely related to spray droplet size data. Rapid reductions of Palmer amaranth groundcover from 100% at time zero to 39.4 to 64.1% and 60.0 to 85.8% were observed 180 minutes after application in greenhouse and field experiments, respectively, regardless of herbicide or nozzle. In one site-year of the greenhouse and field experiments, regrowth of Palmer amaranth occurred 10080 minutes (14 days) after an application of either 2,4-D or dicamba to larger than labeled weeds. In all experiments, complete reduction of live Palmer amaranth tissue was not observed 21 days after application with any herbicide or nozzle combination. Control of Palmer amaranth escapes with reduced groundcover may potentially lead to increased selection pressure on sequentially applied herbicides due to a reduction in spray solution contact with the targeted pest.

2019 ◽  
Vol 34 (3) ◽  
pp. 416-423
Author(s):  
Lucas X. Franca ◽  
Darrin M. Dodds ◽  
Thomas R. Butts ◽  
Greg R. Kruger ◽  
Daniel B. Reynolds ◽  
...  

AbstractHerbicide applications performed with pulse width modulation (PWM) sprayers to deliver specific spray droplet sizes could maintain product efficacy, minimize potential off-target movement, and increase flexibility in field operations. Given the continuous expansion of herbicide-resistant Palmer amaranth populations across the southern and midwestern United States, efficacious and cost-effective means of application are needed to maximize Palmer amaranth control. Experiments were conducted in two locations in Mississippi (2016, 2017, and 2018) and one location in Nebraska (2016 and 2017) for a total of 7 site-years. The objective of this study was to evaluate the influence of a range of spray droplet sizes [150 (Fine) to 900 μm (Ultra Coarse)] on lactofen and acifluorfen efficacy for Palmer amaranth control. The results of this research indicated that spray droplet size did not influence lactofen efficacy on Palmer amaranth. Palmer amaranth control and percent dry-biomass reduction remained consistent with lactofen applied within the aforementioned droplet size range. Therefore, larger spray droplets should be used as part of a drift mitigation approach. In contrast, acifluorfen application with 300-μm (Medium) spray droplets provided the greatest Palmer amaranth control. Although percent biomass reduction was numerically greater with 300-μm (Medium) droplets, results did not differ with respect to spray droplet size, possibly as a result of initial plant injury, causing weight loss, followed by regrowth. Overall, 900-μm (Ultra Coarse) droplets could be used effectively without compromising lactofen efficacy on Palmer amaranth, and 300-μm (Medium) droplets should be used to achieve maximum Palmer amaranth control with acifluorfen.


1997 ◽  
Vol 11 (4) ◽  
pp. 639-643 ◽  
Author(s):  
Thomas C. Mueller ◽  
Alvin R. Womac

When spray mixtures were examined using a laser spray droplet analyzer, the new isopropylamine glyphosate formulation produced more small droplets than a previous isopropylamine salt of glyphosate formulation or glyphosate–trimesium plus nonionic surfactant. The use of a pre-orifice flat-fan nozzle and an impact type flat-fan nozzle reduced the amount of small droplets produced compared to an existing extended range flat-fan nozzle, while maintaining a spray droplet distribution that could still provide good weed control. The new nozzle technologies could provide a useful management tool to manage potential drift situations.


2014 ◽  
Vol 28 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Rand M. Merchant ◽  
A. Stanley Culpepper ◽  
Peter M. Eure ◽  
John S. Richburg ◽  
L. Bo Braxton

Field experiments were conducted in Macon County, Georgia, during 2010 and 2011 to determine the impact of new herbicide-resistant cotton and respective herbicide systems on the control of glyphosate-resistant Palmer amaranth. Sequential POST applications of 2,4-D or glufosinate followed by diuron plus MSMA directed at layby (late POST-directed) controlled Palmer amaranth 62 to 79% and 46 to 49% at harvest when the initial application was made to 8- or 18–cm-tall Palmer amaranth, in separate trials, respectively. Mixtures of glufosinate plus 2,4-D applied sequentially followed by the layby controlled Palmer amaranth 95 to 97% regardless of Palmer amaranth height. Mixing glyphosate with 2,4-D improved control beyond that observed with 2,4-D alone, but control was still only 79 to 86% at harvest depending on 2,4-D rate. Sequential applications of glyphosate plus 2,4-D controlled Palmer amaranth 95 to 96% following the use of either pendimethalin or fomesafen. Seed cotton yield was at least 30% higher with 2,4-D plus glufosinate systems compared to systems with either herbicide alone. The addition of pendimethalin and/or fomesafen PRE did not improve Palmer amaranth control or yields when glufosinate plus 2,4-D were applied sequentially followed by the layby. The addition of these residual herbicides improved at harvest control (87 to 96%) when followed by sequential applications of 2,4-D or 2,4-D plus glyphosate; yields from these systems were similar to those with glufosinate plus 2,4-D. Comparison of 2,4-D and 2,4-DB treatments confirmed that 2,4-D is a more effective option for the control of Palmer amaranth. Results from these experiments suggest cotton with resistance to glufosinate, glyphosate, and 2,4-D will improve Palmer amaranth management. At-plant residual herbicides should be recommended for consistent performance of all 2,4-D systems across environments, although cotton with resistance to glyphosate, glufosinate, and 2,4-D will allow greater flexibility in selecting PRE herbicide(s), which should reduce input costs, carryover concerns, and crop injury when compared to current systems.


2020 ◽  
Vol 34 (4) ◽  
pp. 520-527
Author(s):  
Bruno C. Vieira ◽  
Thomas R. Butts ◽  
Andre O. Rodrigues ◽  
Jerome J. Schleier ◽  
Bradley K. Fritz ◽  
...  

AbstractThe introduction of 2,4-D–resistant soybean and cotton provided growers a new POST active ingredient to include in weed management programs. The technology raises concerns regarding potential 2,4-D off-target movement to sensitive vegetation, and spray droplet size is the primary management factor focused on to reduce spray particle drift. The objective of this study was to investigate the droplet size distribution, droplet velocity, and particle drift potential of glyphosate plus 2,4-D choline pre-mixture (Enlist Duo®) applications with two commonly used venturi nozzles in a low-speed wind tunnel. Applications with the TDXL11004 nozzle had larger DV0.1 (291 µm), DV0.5 (544 µm), and DV0.9 (825 µm) values compared with the AIXR11004 nozzle (250, 464, and 709 µm, respectively), and slower average droplet velocity (8.1 m s−1) compared with the AIXR11004 nozzle (9.1 m s−1). Nozzle type had no influence on drift deposition (P = 0.65), drift coverage (P = 0.84), and soybean biomass reduction (P = 0.76). Although the TDXL11004 nozzle had larger spray droplet size, the slower spray droplet velocity could have influenced the nozzle particle drift potential. As a result, both TDXL11004 and AIXR11004 nozzles had similar spray drift potential. Further studies are necessary to understand the impact of droplet velocity on drift potential at field scale and test how different tank solutions, sprayer configurations, and environmental conditions could influence the droplet size and velocity dynamics and consequent drift potential in pesticide applications.


2017 ◽  
Vol 60 (4) ◽  
pp. 1123-1136 ◽  
Author(s):  
Alvin Ray Womac ◽  
Galina Melnichenko ◽  
Larry Steckel ◽  
Garrett Montgomery ◽  
Julie Reeves ◽  
...  

Abstract. A commercial sprayer operated at a field speed of 24 km h-1 simultaneously applied glufosinate-ammonium through seven spray tip treatments spaced along a 30.5 m boom for measured foliar deposits of herbicide in 35 cm tall Palmer amaranth weeds and spray deposits on foliar-mounted water-sensitive paper (WSP). The experiment followed one that found increased herbicide deposits for dual tips with an adjacent, fore-aft mount, downward-pointed pre-orifice tip (Extremely Coarse) operated with blended pulse-width modulation (bPWM) and a pre-orifice tip (Fine) operated constant (non-bPWM) under moderate ambient wind velocities from 3.1 to 4.1 m s-1. Additional dual-tip treatments were added to the dual-tip configuration for the current experiment to expand droplet Coarseness and to add dual tips operated constant to isolate bPWM effects. Tested treatments in common with the previous experiment included the original dual-tip bPWM and non-bPWM combination, Y-adapter fore-aft-mounted pre-orifice tips with diverging spray patterns both operated bPWM, and an air-induction extended-range tip operated constant. Palmer amaranth weeds, total spray volume rate of 93.5 L ha-1, sprayer speed of 24 km h-1, and test methods were similar between studies, except for negligible wind in the current experiment. Conditions were clear and sunny during spraying without indicators of a stable atmosphere. Overall mean glufosinate-ammonium deposits recovered from leaves were greatest for dual-tips operated constant at reduced droplet size (Very Coarse and Fine) due to reduced required tip size operated without bPWM, and for increased droplet size for Y-adapter-mounted pre-orifice tips (Extremely Coarse and Coarse) operated with bPWM, resulting in overall mean glufosinate-ammonium leaf deposits of 15.9 and 15.0 µg a.i. cm-2, respectively. The combination of dual tips at reduced droplet size or the Y-adapter fore-aft spray pattern divergence of bPWM tips coupled with high sprayer speed enhanced droplet interception by Palmer amaranth plants under negligible wind conditions, since the collected deposits, even without summed integration over foliage height, significantly exceeded the applied rate of 8.2 µg a.i. cm-2. An air-induction extended-range tip non-bPWM (Very Coarse) provided the next highest mean in overall glufosinate-ammonium deposit. One increased-droplet size dual-tip, pre-orifice tip bPWM and non-bPWM (Ultra Coarse and Coarse) resulted in a mean deposit that was not significantly different from the air-induction extended-range tip operated non-bPWM. Other dual-tip combinations with bPWM and non-bPWM, including the original dual-tip configuration in the previous study, resulted in significantly reduced mean herbicide deposits. Considering all tested tips, advantages of bPWM depended on spray tip droplet size classifications and Y-mounted fore-aft divergence of spray patterns. Overall mean WSP spot deposits were greatest for reduced droplet size (Very Coarse and Fine) dual pre-orifice tips operated non-bPWM, corresponding with the highest numerical overall mean of glufosinate-ammonium deposit. This correspondence of highest spot deposits and highest mean glufosinate-ammonium deposit also occurred in the previous study. Increased Palmer amaranth control correlated with increased glufosinate-ammonium deposit and decreased volume median diameter (Dv0.5) determined with WSP electronic scans, with the air-induction extended-range tip operated constant and the Y-adapter pre-orifice tip operated as bPWM providing the highest weed control. Overall mean WSP spot deposits ranged from 42.3 to 81.1 spots cm-2, compared to 14.0 to 47.0 spots cm-2 previously reported for similar spray conditions, with spot deposits attributed to negligible wind versus wind, respectively. Thus, the spray environment, particularly wind, exhibited effects on nozzle tip comparisons for foliar deposition and may offer some rationale for the conflicting published data beyond the examined treatments. Keywords: Application technology, Blended pulse-width modulation, Herbicide, Herbicide resistance, Nozzle, Spray deposition, Water-sensitive paper, Weed.


2016 ◽  
Vol 30 (2) ◽  
pp. 573-586 ◽  
Author(s):  
Cody F. Creech ◽  
Jesaelen G. Moraes ◽  
Ryan S. Henry ◽  
Joe D. Luck ◽  
Greg R. Kruger

Herbicide applications often do not reach their full potential because only a small amount of the active ingredients reaches the intended targets. Selecting the appropriate application parameters and equipment can allow for improved efficacy. The objective of this research was to evaluate the effect of droplet size on efficacy of six commonly used herbicides. Atrazine (1.12 kg ai ha−1), cloransulam-methyl (0.18 g ai ha−1), dicamba (0.14 kg ae ha−1), glufosinate (0.59 kg ai ha−1), saflufenacil (12.48 g ai ha−1), and 2,4-D (0.20 kg ae ha−1) were applied to seven plant species using an XR11003 nozzle at 138, 276, and 414 kPa and a AI11003 nozzle at 207, 345, and 483 kPa. Each herbicide, nozzle, and pressure combination was evaluated for droplet size spectra. Treatments were applied at 131 L ha−1to common lambsquarters, common sunflower, shattercane, soybean, tomato, velvetleaf, and volunteer corn. Control from 2,4-D was observed to increase approximately 12% on average for all species except common lambsquarters as droplet size increased from medium to very coarse (Dv0.5303 to 462 μm;Dv0.5is droplet size such that 50% of spray volume is contained in droplets of equal or smaller size). Control with atrazine was near 95% for common lambsquarters, common sunflower, and soybean. Atrazine provided the greatest shattercane control using a medium (Dv0.5325 μm) droplet, whereas the same droplet size provided the lowest tomato control. Control of common lambsquarters, shattercane, and tomato with cloransulam-methyl increased 79% when decreasing droplet size from extremely coarse to fine (Dv0.5637 to 228 μm). Dicamba control of common lambsquarters increased 17% using a medium droplet compared with a fine droplet (Dv0.5279 to 204 μm). Dry weight of common sunflower and soybean was reduced 21% using dicamba when using a very coarse spray compared with a fine spray classification (Dv0.5491 to 204 μm). Common lambsquarters control using glufosinate increased 18% using a fine spray classification (Dv0.5186 μm) compared with medium (Dv0.5250 μm) and both very coarse droplet sizes (Dv0.5470 and 516 μm). Conversely, tomato and velvetleaf control with glufosinate was maximized using a very coarse (Dv0.5470 and 516 μm) or extremely coarse droplet (Dv0.5628 μm) with increases of 11 and 25% compared with a fine spray (Dv0.5186 μm). Saflufenacil control of volunteer corn was 38% greater using extremely coarse droplets (Dv0.5622 μm) than fine, medium, and very coarse spray classifications (Dv0.5257 to 514 μm). Overall, spray classifications for the herbicides evaluated play an important role in herbicide efficacy and should be tailored to the herbicide being used and the targeted weed species.


2020 ◽  
Vol 34 (4) ◽  
pp. 511-519
Author(s):  
Lucas X. Franca ◽  
Darrin M. Dodds ◽  
Thomas R. Butts ◽  
Greg R. Kruger ◽  
Daniel B. Reynolds ◽  
...  

AbstractAcifluorfen is a nonsystemic PPO-inhibiting herbicide commonly used for POST Palmer amaranth control in soybean, peanut, and rice across the southern United States. Concerns have been raised regarding herbicide selection pressure and particle drift, increasing the need for application practices that optimize herbicide efficacy while mitigating spray drift. Field research was conducted in 2016, 2017, and 2018 in Mississippi and Nebraska to evaluate the influence of a range of spray droplet sizes [150 μm (Fine) to 900 μm (Ultra Coarse)], using acifluorfen to create a novel Palmer amaranth management recommendation using pulse width modulation (PWM) technology. A pooled site-year generalized additive model (GAM) analysis suggested that 150-μm (Fine) droplets should be used to obtain the greatest Palmer amaranth control and dry biomass reduction. Nevertheless, GAM models indicated that only 7.2% of the variability observed in Palmer amaranth control was due to differences in spray droplet size. Therefore, location-specific GAM analyses were performed to account for geographical differences to increase the accuracy of prediction models. GAM models suggested that 250-μm (Medium) droplets optimize acifluorfen efficacy on Palmer amaranth in Dundee, MS, and 310-μm (Medium) droplets could sustain 90% of maximum weed control. Specific models for Beaver City, NE, indicated that 150-μm (Fine) droplets provide maximum Palmer amaranth control, and 340-μm (Medium) droplets could maintain 90% of greatest weed control. For Robinsonville, MS, optimal Palmer amaranth control could be obtained with 370-μm (Coarse) droplets, and 90% maximum control could be sustained with 680 μm (Ultra Coarse) droplets. Differences in optimal droplet size across location could be a result of convoluted interactions between droplet size, weather conditions, population density, plant morphology, and soil fertility levels. Future research should adopt a holistic approach to identify and investigate the influence of environmental and application parameters to optimize droplet size recommendations.


2019 ◽  
Vol 33 (04) ◽  
pp. 569-577 ◽  
Author(s):  
Chris J. Meyer ◽  
Jason K. Norsworthy

AbstractWeed size can nfluence herbicide performance and herbicide interactions in mixtures. To control a broad range of species in soybean or cotton, POST herbicide mixtures will likely be commonplace in Roundup Ready® XtendFlex® and Enlist™ technologies. The impact of weed size on herbicide interactions that could occur in Roundup Ready XtendFlex or Enlist crops was assessed in two field experiments conducted in 2015 and 2016 at the Northeast Research and Extension Center in Keiser, AR. Combinations of glufosinate, glyphosate, dicamba, and 2,4-D were applied to either 10-cm or 30-cm weeds and evaluated for percent weed control, height reduction, and density reduction, collected 5 wk after treatment. Colby’s method was used to analyze treatments for herbicide interactions for control of barnyardgrass, Palmer amaranth, and pitted morningglory. Antagonism was identified with at least one treatment on all species. Almost all treatments were antagonistic for percent weed control, height reduction, and density reduction on barnyardgrass. When glyphosate in mixture with 2,4-D or dicamba was applied to 30-cm barnyardgrass, control declined 9% for both mixtures relative to glyphosate alone. Glufosinate plus glyphosate was antagonistic when applied to both 30-cm pitted morningglory and barnyardgrass. Glufosinate plus dicamba provided less control and density reduction of Palmer amaranth than what was expected from Colby’s equation. Overall, antagonism was more likely to be identified when applications were made to 30-cm weeds compared with 10-cm weeds. The utility of a given herbicide mixture will depend on the species present in the field and the size of those species at the time of application.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 219
Author(s):  
Martha L. Taboada ◽  
Esteban Zapata ◽  
Heike P. Karbstein ◽  
Volker Gaukel

The goal of this study was to investigate oil droplet breakup in food emulsions during atomization with pressure swirl (PS), internal mixing (IM), and external mixing (EM) twin-fluid atomizers. By this, new knowledge is provided that facilitates the design of atomization processes, taking into account atomization performance as well as product characteristics (oil droplet size). Atomization experiments were performed in pilot plant scale at liquid volume flow rates of 21.8, 28.0, and 33.3 L/h. Corresponding liquid pressures in the range of 50–200 bar and air-to-liquid ratios in the range of 0.03–0.5 were applied. Two approaches were followed: oil droplet breakup was initially compared for conditions by which the same spray droplet sizes were achieved at constant liquid throughput. For all volume flow rates, the strongest oil droplet breakup was obtained with the PS nozzle, followed by the IM and the EM twin-fluid atomizer. In a second approach, the concept of energy density EV was used to characterize the sizes of resulting spray droplets and of the dispersed oil droplets in the spray. For all nozzles, Sauter mean diameters of spray and oil droplets showed a power-law dependency on EV. PS nozzles achieved the smallest spray droplet sizes and the strongest oil droplet breakup for a constant EV. In twin-fluid atomizers, the nozzle type (IM or EM) has a significant influence on the resulting oil droplet size, even when the resulting spray droplet size is independent of this nozzle type. Overall, it was shown that the proposed concept of EV allows formulating process functions that simplify the design of atomization processes regarding both spray and oil droplet sizes.


Sign in / Sign up

Export Citation Format

Share Document