The Influence of Forest Canopies on the Decay of Aircraft Wake Vortices and Downwash

2018 ◽  
Vol 61 (6) ◽  
pp. 1857-1866
Author(s):  
Milton E. Teske ◽  
Harold W. Thistle

Abstract. The dominant mechanism driving aerially released spray material toward the ground is the flow field generated by the aircraft, in the form of either aircraft vortices or downwash. In AGDISP, the initial strength of this flow field is reduced over time by a simple damping mechanism tied to atmospheric turbulence. When these flow fields enter a forest canopy, the scrubbing impact of the canopy structure further reduces their strength and influences the behavior of spray droplets released into the canopy. This study uses a simple model to approximate the canopy damping mechanism and then applies this model to a recent canopy dataset in an effort to validate the approach proposed. Keywords: Aerial spray, AGDISP, Aircraft vortices, Canopy penetration, Damping, Downwash.

2020 ◽  
Author(s):  
Feng Qiu ◽  
Qian Zhang

<p>Forest canopy reflectance varies with solar and observation geometries and shows distinct anisotropic characteristics. The bidirectional reflectance distribution function (BRDF) of forest canopies is influenced by canopy structure, leaf biochemistry and background reflectance. Multi-angular remote sensing observations of forest canopies provide much more information about canopy structure and background information compared with the nadir observations. The development of unmanned aerial vehicle (UAV) provides great opportunities for multi-angular observations in forests. We developed a solid method to obtained bidirectional reflectance of forest canopies based on a hyperspectral UAV imaging platform in this study. With this multi-angular observation method, we obtained canopy reflectance images with the view zenith angle (VZA) varying from 60° (forward) to 60° (backward) at fixed interval (10°), as well as the hotspot and darkspot images in the principle plane in conifer forests. Since the single pixel with very high spatial resolution (around 10 cm) in the UAV images are not representative for the study of the whole forest canopy, several pixels in the central of each images were selected and averaged to determine the canopy reflectance. Variations of the averaged reflectance with ground distance represented by the selected pixels were analyzed and the optimum ground distance for study the multi-angular forest canopy reflectance was determined. The observed canopy reflectance peaks at the hotspot and clear images of the hotspot are observed. The sensitivities of canopy reflectance to VZAs vary with spectral bands. The reflectance at red bands near 680 nm are most sensitive to VZA. Some common used vegetation indices, such as NDVI, EVI, MTCI, PRI, also vary greatly with VZAs and demonstrate different spatial distribution patterns. The observations fit well with the 4-Scale geometric-optical model simulations. The multi-angular observation methods based on UAV platform have the advantages of efficient and effective in multi-angular observation with higher flexibility in VZA adjustment and lower cost, compared with the airborne or spaceborne sensors. This multi-angular observation method is very useful for study the BRDF and canopy structural and biochemical characteristics of forests and has great potential in forestry and ecological studies.</p>


Author(s):  
W. Liu ◽  
J. Atherton ◽  
M. Mõttus ◽  
A. MacArthur ◽  
H. Teemu ◽  
...  

Solar induced chlorophyll a fluorescence (SIF) has been shown to be an excellent proxy of photosynthesis at multiple scales. However, the mechanical linkages between fluorescence and photosynthesis at the leaf level cannot be directly applied at canopy or field scales, as the larger scale SIF emission depends on canopy structure. This is especially true for the forest canopies characterized by high horizontal and vertical heterogeneity. While most of the current studies on SIF radiative transfer in plant canopies are based on the assumption of a homogeneous canopy, recently codes have been developed capable of simulation of fluorescence signal in explicit 3-D forest canopies. Here we present a canopy SIF upscaling method consisting of the integration of the 3-D radiative transfer model DART and a 3-D object model BLENDER. Our aim was to better understand the effect of boreal forest canopy structure on SIF for a spatially explicit forest canopy.


2022 ◽  
Vol 505 ◽  
pp. 119945
Author(s):  
Jian Zhang ◽  
Zhaochen Zhang ◽  
James A. Lutz ◽  
Chengjin Chu ◽  
Jianbo Hu ◽  
...  

Author(s):  
Brady S. Hardiman ◽  
Elizabeth A. LaRue ◽  
Jeff W. Atkins ◽  
Robert T. Fahey ◽  
Franklin W. Wagner ◽  
...  

Forest canopy structure (CS) controls many ecosystem functions and is highly variable across landscapes, but the magnitude and scale of this variation is not well understood. We used a portable canopy lidar system to characterize variation in five categories of CS along N = 3 transects (140–800 m long) at each of six forested landscapes within the eastern USA. The cumulative coefficient of variation was calculated for subsegments of each transect to determine the point of stability for individual CS metrics. We then quantified the scale at which CS is autocorrelated using Moran’s I in an Incremental Autocorrelation analysis. All CS metrics reached stable values within 300 m but varied substantially within and among forested landscapes. A stable point of 300 m for CS metrics corresponds with the spatial extent that many ecosystem functions are measured and modeled. Additionally, CS metrics were spatially autocorrelated at 40 to 88 m, suggesting that patch scale disturbance or environmental factors drive these patterns. Our study shows CS is heterogeneous across temperate forest landscapes at the scale of 10’s of meters, requiring a resolution of this size for upscaling CS with remote sensing to large spatial scales.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 318 ◽  
Author(s):  
Siyi Tan ◽  
Hairong Zhao ◽  
Wanqin Yang ◽  
Bo Tan ◽  
Kai Yue ◽  
...  

Trace metals can enter natural regions with low human disturbance through atmospheric circulation; however, little information is available regarding the filtering efficiency of trace metals by forest canopies. In this study, a representative subalpine spruce plantation was selected to investigate the net throughfall fluxes of eight trace metals (Fe, Mn, Cu, Zn, Al, Pb, Cd and Cr) under a closed canopy and gap-edge canopy from August 2015 to July 2016. Over the one-year observation, the annual fluxes of Al, Zn, Fe, Mn, Cu, Cd, Cr and Pb in the deposited precipitation were 7.29 kg·ha−1, 2.30 kg·ha−1, 7.02 kg·ha−1, 0.16 kg·ha−1, 0.19 kg·ha−1, 0.06 kg·ha−1, 0.56 kg·ha−1 and 0.24 kg·ha−1, respectively. The annual net throughfall fluxes of these trace metals were −1.73 kg·ha−1, −0.90 kg·ha−1, −1.68 kg·ha−1, 0.03 kg·ha−1, −0.03 kg·ha−1, −0.02 kg·ha−1, −0.09 kg·ha−1 and −0.08 kg·ha−1, respectively, under the gap-edge canopy and 1.59 kg·ha−1, −1.13 kg·ha−1, −1.65 kg·ha−1, 0.10 kg·ha−1, −0.04 kg·ha−1, −0.03 kg·ha−1, −0.26 kg·ha−1 and −0.15 kg·ha−1, respectively, under the closed canopy. The closed canopy displayed a greater filtering effect of the trace metals from precipitation than the gap-edge canopy in this subalpine forest. In the rainy season, the net filtering ratio of trace metals ranged from −66.01% to 89.05% for the closed canopy and from −52.32% to 33.09% for the gap-edge canopy. In contrast, the net filtering ratio of all trace metals exceeded 50.00% for the closed canopy in the snowy season. The results suggest that most of the trace metals moving through the forest canopy are filtered by canopy in the subalpine forest.


Ecosystems ◽  
2019 ◽  
Vol 23 (5) ◽  
pp. 1056-1074
Author(s):  
Bethany J. Blakely ◽  
Adrian V. Rocha ◽  
Jason S. McLachalan

AbstractAnthropogenic land use affects climate by altering the energy balance of the Earth’s surface. In temperate regions, cooling from increased albedo is a common result of historical land-use change. However, this albedo cooling effect is dependent mainly on the exposure of snow cover following forest canopy removal and may change over time due to simultaneous changes in both land cover and snow cover. In this paper, we combine modern remote sensing data and historical records, incorporating over 100 years of realized land use and climatic change into an empirical assessment of centennial-scale surface forcings in the Upper Midwestern USA. We show that, although increases in surface albedo cooled through strong negative shortwave forcings, those forcings were reduced over time by a combination of forest regrowth and snow-cover loss. Deforestation cooled strongly (− 5.3 Wm−2) and mainly in winter, while composition shift cooled less strongly (− 3.03 Wm−2) and mainly in summer. Combined, changes in albedo due to deforestation, shifts in species composition, and the return of historical forest cover resulted in − 2.81 Wm−2 of regional radiative cooling, 55% less than full deforestation. Forcings due to changing vegetation were further reduced by 0.32 Wm−2 of warming from a shortened snow-covered season and a thinning of seasonal snowpack. Our findings suggest that accounting for long-term changes in land cover and snow cover reduces the estimated cooling impact of deforestation, with implications for long-term land-use planning.


2017 ◽  
Vol 26 (11) ◽  
pp. 963 ◽  
Author(s):  
Michael J. Lacki ◽  
Luke E. Dodd ◽  
Nicholas S. Skowronski ◽  
Matthew B. Dickinson ◽  
Lynne K. Rieske

The extent to which prescribed fires affect forest structure and habitats of vertebrate species is an important question for land managers tasked with balancing potentially conflicting objectives of vegetation and wildlife management. Many insectivorous bats forage for insect prey in forested habitats, serving as the primary predators of nocturnal forest insects, and are potentially affected by structural changes in forests resulting from prescribed fires. We compared forest-stand characteristics of temperate oak–hickory forests, as measured with airborne laser scanning (light detection and ranging, LiDAR), with categorical estimates of burn severity from prescribed fires as derived from Landsat data and field-based Composite Burn Indices, and used acoustic monitoring to quantify activity of insectivorous bats in association with varying degrees of burn severity (unburned habitat, low severity and medium severity). Forest-stand characteristics showed greatest separation between low-severity and medium-severity classes, with gap index, i.e. open-air space, increasing with degree of burn severity. Greater mid-storey density, over-storey density and proportion of vegetation in the understorey occurred in unburned habitat. Activity of bats did not differ with burn severity for high-frequency (clutter-adapted or closed-space foragers) or low-frequency (edge or open-space foragers) bats. Results indicate that differing degrees of burn severity from prescribed fires produced spatial variation in canopy structure within stands; however, bats demonstrated no shifts in activity levels to this variation in canopy structure, suggesting prescribed fire during the dormant season, used as a management practice targeting desired changes in vegetation, is compatible with sustaining foraging habitat of insectivorous bats.


Sign in / Sign up

Export Citation Format

Share Document