scholarly journals Feasibility Study for Water-Electricity Cogeneration Using Integrated System of Concentrated Solar Power and Biofuel as Renewable Energy Sources

Author(s):  
Wael A. Al Nahdi ◽  
Mohamed I. Hassan Ali
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4768 ◽  
Author(s):  
Alexandra G. Papadopoulou ◽  
George Vasileiou ◽  
Alexandros Flamos

Raising the penetration of renewable energy sources constitutes one of the main pillars of contemporary decarbonization strategies. Within this context, further progress is required towards the optimal exploitation of their potential, especially in terms of dispatchability, where the role of storage is considered vital. Although current literature delves into either storage per se or the integration of storage solutions in single renewable technologies, the comparative advantages of each technology remain underexplored. However, high-penetration solutions of renewable energy sources (RES) are expected to combine different technological options. Therefore, the conditions under which each technology outperforms their counterparts need to be thoroughly investigated, especially in cases where storage components are included. This paper aims to deal with this gap, by means of assessing the combination of three competing technologies, namely concentrated solar power (CSP), photovoltaics (PV) and offshore wind, with the storage component. The techno-economic assessment is based on two metrics; the levelized cost of electricity and the net present value. Considering the competition between the technologies and the impact storage may have, the paper’s scope lies in investigating the circumstances, under which CSP could have an advantage against comparable technologies. Overall, PVs combined with storage prevail, as the most feasible technological option in the examined storage scenarios—with an LCOE lower than 0.11 €/kWh. CSP LCOE ranged between 0.1327–0.1513 €/kWh for high capacity factors and investment costs, thus larger storage components. Offshore wind—with a lower storage component—had an LCOE of 0.1402 €/kWh. Thus, CSP presents the potential to outperform offshore wind in cases where the latter technology is coupled with high storage requirements. CSP can be viewed as one of the options that could support European Union (EU) decarbonization scenarios. As such, an appropriate market design that takes into consideration and values CSP characteristics, namely dispatchability, is needed at the EU level.


Author(s):  
Rodrigo Escobar ◽  
Teresita Larrai´n

The Chilean Energy Policy calls for 15 percent of new power generation capacity to come from renewable energy sources from 2006 to 2010, and then a 5% of electric energy generated from renewable energy sources with gradual increases in order to reach 10% by 2024. Concentrated solar power is an interesting alternative to help achieving those objectives, as it is estimated that northern Chile has high radiation levels, coupled with high values of the local clearness index and availability of flat terrain. The present report investigates the net energy attributes of parabolic trough plants installed in the Atacama Desert. Monthly means of solar radiation are used in order to estimate the solar fraction for a 100 MW plant at three different locations. Our analysis considers three cases: operation during sunlight hours only, with and without fossil fuel back-up, and continuous operation during 24 hours a day. The net energy analysis for concentrated solar power (CSP) plants is then performed, considering the energy costs of manufacturing, transport, installation, operation and decommissioning. The results indicate that the CSP plants are a net energy source when operating in sunlight-only mode and that the energy payback time is a linear function of the total operation time when utilizing fossil fuel back-up. In the continuous operation mode, the CSP plants become fossil fuel plants with solar assistance, and therefore all locations display negative net energy. Based on this result, the back-up fraction required for the plants to be net energy sources is estimated from the EROEI as function of the back-up fraction. It is estimated that the net energy analysis is a useful tool for determining under which conditions a CSP plant becomes a net energy source, and thus can be utilized in order to define geographical locations and operation conditions where they can be considered renewable energy sources.


Author(s):  
Sebak Kumar Jana ◽  
Moumita Ghosh ◽  
Asim Kumar Karmakar

Renewable energy is energy that is collected from renewable resources that are essentially inexhaustible like sunlight, wind, hydropower, and various forms of biomass. India has a huge renewable energy potential, and the availability of renewable energy sources is widely dispersed. The key objectives of the chapter are to assess the state development of renewable energy in India. It is seen that the average percentage users of solar power in India has increased from 0.27% in 2001 to 0.44% in 2011. ANOVA results indicate there is significant difference among the states of India in renewable energy development in comparison to their potential capacities, and there is enough scope for the development of renewable energy like solar energy in India.


2014 ◽  
Vol 624 ◽  
pp. 604-612 ◽  
Author(s):  
Rifat Alihodzic ◽  
Vera Murgul ◽  
Nikolay Vatin ◽  
Ekaterina Aronova ◽  
Vojislav Nikolić ◽  
...  

Pre-school facilities are considered to be specific buildings in the matter of construction and renovation. Space-planning features in design for pre-school facilities create special conditions for solar power use to ensure heat and power supply. The article deals with estimation of incoming solar power in reference to the surfaces oriented in different cardinal directions under the weather conditions of the city of Saint-Petersburg (Russia) and the city of Nish (Serbia). A model of how to ensure power supply for a kindergarten of the city of Nish is presented on the basis of the calculations analysis. The cases with regard to completed projects designed to use renewable energy sources in order to supply pre-school facilities with energy in other weather conditions are given herein.


2020 ◽  
pp. 48-55
Author(s):  
Olena I. Matsenko ◽  
Vladyslav S. Tereshchenko ◽  
Vladyslav S. Piven ◽  
Andrii A. Panchenko ◽  
Evhenyi A. Perekhod

The use of alternative energy sources, in particular solar energy, has gained rapid growth in recent years. This trend is prompting manufacturers of equipment for solar power plants to increase production volumes. At the same time, the question arises of the disposal of used modules, because each material has its service life. According to technical specifications, the average life of solar modules and batteries is 25-30 years. Decommissioning may occur earlier than this time due to the following reasons – moral and physical deterioration, mechanical damage, replacement of obsolete equipment with new, modernization of solar power plants. Already in 2030, it will be necessary to replace the solar modules installed in 2000. Therefore, there are acute questions not only regarding the development of technologies for processing waste equipment from solar power plants but also organizational and economic methods. This article discusses the main problems that arise during the utilization and recycling of solar modules, analyzes the experience of countries in resolving these issues. After all, the use of renewable energy sources should minimize the negative impact on the environment from energy production at all stages – from the production of equipment for a power plant to the disposal and recycling of this equipment. Keywords: solar panel, recycling, economic method, solar power, natural resource, economic problem, environment, renewable energy.


Green ◽  
2011 ◽  
Vol 1 (3) ◽  
Author(s):  
Michael Düren

AbstractSolar power from deserts can contribute significantly to a future renewable energy system. The technically accessible solar potential in deserts exceeds the global energy demand by a factor of 20. In the DESERTEC concept, a smart super grid based on HVDC technology interconnects wind, solar and other renewable energy sources with distant consumers on a scale of several thousand kilometres. The large grid averages out the natural fluctuations of renewable energy sources to a large extend. Remaining fluctuations have to be compensated by storage systems. Two competing technologies, CSP and PV, are available for large-scale solar power production in desert countries. CSP technology can be combined with thermal energy storage and water desalination. A large-scale production of solar energy in desert countries has important socio-economic implications. The interconnection of continents by large power grids introduces new economical interdependencies, which can help to reduce the North-South gradient of economic wealth.


Author(s):  
Rodrigo Escobar ◽  
Teresita Larrain

The Chilean Energy Policy calls for 15 percent of new power generation capacity to come from renewable energy sources from 2006 to 2010, and then a 5% of electric energy generated from renewable energy sources with gradual increases in order to reach 10% by 2024. Neither the government nor the power generation sector plans mention solar energy to be part of the renewable energy initiative. Part of this apparent lack of interest in solar energy might be due to the absence of a valid solar energy database, adequate for energy system planning activities. Monthly means of solar radiation are used in order to estimate the solar fraction for a 100 MW plant for four given locations. Our analysis considers two cases: operation during sunlight hours, and continuous operation during 24 hours a day. A net energy analysis for concentrated solar power (CSP) plants in Chile is then performed, considering the energy costs of manufacturing, transport, installation, operation and decommissioning. The results indicate that the CSP plants are a net energy source in three of the four locations, when operating in sunlight-only mode. This is due to the lower radiation levels available at that location, which implies a high fossil fuel back-up fraction. In the continuous operation mode, the CSP plants become fossil fuel plants with solar assistance, and therefore all locations display negative net energy. Based on this result, the back-up fraction required for the plants to be net energy sources is estimated from the EROEI as function of the back-up fraction. It is estimated that the net energy analysis is a useful tool for determining under which conditions a CSP plant becomes a net energy source, and thus can be utilized in order to define geographical locations and operation conditions where they can be considered renewable energy sources.


Sign in / Sign up

Export Citation Format

Share Document