Developing an integrated system of heating and hot water for distributed objects based on the use of renewable energy sources with remote control

2013 ◽  
Vol 9 (4) ◽  
pp. 128-130
Author(s):  
Yertugan Umbetkuiov
2021 ◽  
Vol 295 ◽  
pp. 04005
Author(s):  
Sergey Batukhtin ◽  
Andrey Batukhtin ◽  
Marina Baranovskaya

According to experts’ forecasts, by 2040 the global demand for energy will increase by 37%, and renewable energy sources in the next 20 years will become the fastest growing segment of the world energy, their share in the next decade will grow by about one and a half times. Solar energy is the fastest growing industry among all non-conventional energy sources and is gaining the highest rates of development in comparison with other renewable energy sources. In this article, the authors provide an overview of the technologies that increase the efficiency and productivity of solar panels, only the investigated methods are described that can speed up the process of introducing solar energy instead of traditional. All the methods described can increase the efficiency of systems that are based on the use of the sun as the main source of energy. The authors presented and described the scheme of a solar-air thermal power plant, which will improve energy efficiency through the use of a regenerative air solar collector with increased heat transfer efficiency. Strengthening will be achieved through the use of hemispherical depressions on the surface that receives solar radiation. A schematic diagram is given and the principle of operation of such a solar collector is described in detail. A comparative calculation of the intensification of the solar collector with the use of depressions and without the use as modernization was carried out, on the basis of which a conclusion was made about the efficiency of using this type of solar collector and the economic effect from the application of this method. A description of the method for calculating the solar collector is given, thanks to which this development can be used and implemented in existing heating and hot water supply systems.


2019 ◽  
Vol 3 (2) ◽  

In the recent attempts to stimulate alternative energy sources for heating and cooling of buildings, emphasise has been put on utilisation of the ambient energy from ground source heat pump systems (GSHPs) and other renewable energy sources. Exploitation of renewable energy sources and particularly ground heat in buildings can significantly contribute towards reducing dependency on fossil fuels. The study was carried out at the Energy Research Institute (ERI), between September 2016 and November 2017. This paper highlights the potential energy saving that could be achieved through use of ground energy source. The main concept of this technology is that it uses the lower temperature of the ground (approximately <32°C), which remains relatively stable throughout the year, to provide space heating, cooling and domestic hot water inside the building area. The purpose of this study, however, is to examine the means of reducing of energy consumption in buildings, identifying GSHPs as an environmental friendly technology able to provide efficient utilisation of energy in the buildings sector, promoting the use of GSHPs applications as an optimum means of heating and cooling, and presenting typical applications and recent advances of the DX GSHPs. It is concluded that the direct expansion of GSHP are extendable to more comprehensive applications combined with the ground heat exchanger in foundation piles and the seasonal thermal energy storage from solar thermal collectors. This study highlights the energy problem and the possible saving that can be achieved through the use of the GSHP systems. This article discusses the principle of the ground source energy, varieties of GSHPs, and various developments.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5984
Author(s):  
Hanna Jędrzejuk ◽  
Dorota Chwieduk

This paper analyses possibilities of refurbishment of Warsaw’s residential buildings towards standards of the Positive Energy District. The annual final energy consumption in the city in 2019 for the district heating was 8668 GWh, gas (pipelines) was 5300 GWh, electricity from the grid was 7500 GWh, while the emission of the carbon dioxide was 5.62 × 109 kg. The city consists of 18 districts, which are heterogeneous in terms of typology and structure of buildings. The great variety of buildings can be seen, for example, by the annual final energy demand for space heating and hot water preparation per unit of room area. This annual index ranges from over 400 kWh/m2 in historic buildings to 60 kWh/m2 in modern buildings. A reduction in the consumption of non-renewable energy sources and carbon dioxide emissions can be achieved by improving the energy standard of residential buildings and by using renewable energy sources: solar energy, geothermal energy and biogas. The potential barriers for achieving the status of a positive energy district, for example, problems connected with ownership, financing new investments and refurbishment and legal boundaries, have been identified. Moreover, changing the existing electrical grid and district heating systems in urban areas in Warsaw requires comprehensive modernization of practically the entire city’s infrastructure.


2021 ◽  
Vol 13 (15) ◽  
pp. 8277
Author(s):  
Jaime Resende ◽  
Helena Corvacho

As of now, in the EU, all new buildings will have to comply with the requirements for nearly zero energy buildings (nZEB). Portugal defines limits for the maximum useful energy needs for heating and for the maximum primary energy needs and establishes that 50% of primary energy needs must be covered by local renewable energy sources, based on the dwellings’ nominal condition of use. However, the actual use is different. Thus, a simulation tool is used to assess thermal comfort and energy needs for different conditions of use of a dwelling complying with nZEB requirements. Eight different locations are chosen, covering all Portuguese climate zones. The nZEB requirements lead to unusually high levels of thermal insulation, especially in the coldest regions, so special care must be taken by the designers to avoid overheating in summer. Without using HVAC system, some discomfort is found but comfort is possible with low energy consumption. Furthermore, the compliance with nZEB requirements proved to be enough to ensure that a significant percentage of useful energy needs for heating, cooling and domestic hot water is supplied by local renewable energy sources. This is key in order to overcome the high rate of energy poverty in Portugal.


2018 ◽  
Vol 30 ◽  
pp. 03001
Author(s):  
Maciej Knapik

The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 41
Author(s):  
Dorota Anna Krawczyk ◽  
Antonio Rodero ◽  
Agata Witkowska ◽  
Bernadetta Wądołowska

This research aims to show the advisability of usage of selected renewable energy sources for domestic hot water (DHW) installations in buildings located in Poland and Spain. The analysis was conducted for a typical kindergarten, an example of buildings with high density of people and stable profile of usage, as opposed to schools which are closed during summer holidays. We took into account national regulations to estimate heat demand. Then applying solar collectors and heat pumps to use as a monovalent energy sources were considered. The total cost of the system with solar collectors in Poland was found to be 1.4 times higher than in Spain, whereas the difference in a case of air heat pumps was 18%. Moreover efficiency of solar collector and heat pump systems were found as 49.56% for Warsaw, 52.29% for Madrid with coefficient of performance (COP) 2.2 and 2.55 respectively, therefore simple payback time (SPBT) of investment was estimated in a range between 6–12 years for solar collectors and 5–6 years for heat pumps.


2019 ◽  
Vol 85 ◽  
pp. 04006
Author(s):  
Adrian Ilie ◽  
Ion Vişa

The energy used in the built-up environment represents at least 40% of the total energy consumed, out of which, at least 60% is required for heating, cooling and domestic hot water (DHW). Within the European Union, more than 6,000 communities (i.e. over 9%) use district heating systems, the majority of which use the conversion of fossil fuels as a source of energy. This aspect, which is corroborated by the directives of the EU legislation on the use of renewable energy sources and energy performance, imposes the development of new solutions through which the existing district heating systems may be adapted to use renewable energy sources. The solar-thermal systems that are used on a large (district) scale are becoming more and more efficient from the point of view of their feasibility; however, it is almost impossible to create systems that should satisfy the thermal energy demand throughout the four seasons of the year. The hybrid solar-biomass system is becoming the applicable solution for the majority of the communities that have from this potential, since it can secure independence from the point of view of the use of thermal energy. This paper presents the design stages for the implementation of the hybrid solar-biomass systems with a view to identifying the optimal solutions for systems to be integrated into an existing district heating system. A case study (Taberei District in Odorheiu Secuiesc City), which provides a detailed description of the feasible technical solutions, is presented.


Sign in / Sign up

Export Citation Format

Share Document