scholarly journals Inter Simple Sequence Repeat molecular markers to reveal the genetic diversity of superior durian of Gunungpati, Semarang, Indonesia

2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Evy Nasrika ◽  
Amin Retnoningsih

Abstract. Nasrika E, Retnonongsih A. 2021. Inter Simple Sequence Repeat molecular markers to reveal the genetic diversity of superior durian of Gunungpati, Semarang, Indonesia. Biodiversitas 22: 4054-4059. Kalimantan is the center of many tropical fruits, including durian. One of the edible durians and favorited by many is Durio zibethinus, which has many superior varieties. Almost all regions in Indonesia have superior durian varieties; for example, superior durian Gunungpati from Gunungpati Sub-district, the center for producing durian in Semarang City, Central Java, Indonesia. ISSR analysis was carried out to reveal the genetic diversity of the superior durian Gunungpati. DNA isolation of 16 superior durians used the modified CTAB method. The genomic DNA was amplified using 10 ISSR primers and then electrophoresed using 2% agarose gel. Data were analyzed using NTSYS PC version 2.02. The resulting allele has a relative size of 220 bp-1800 bp, with 87.9% are polymorphic. The similarity coefficient of 16 varieties was ranged between 0.54-0.88. All the superior durian varieties examined were different accessions so that each variety has the potential to be registered as a new variety of superior Indonesian durian. Specific alleles are found in G1, G3, G7, G8, and G13, which can be an identity of these varieties.

2020 ◽  
Vol 17 (4) ◽  
pp. 651-661
Author(s):  
Le Ngoc Trieu ◽  
Nong Van Duy ◽  
Tran Van Tien

Panax vietnamensis var. langbianensis is a new variety from Lam Vien plateau of Vietnam. In this study, inter simple sequence repeat (ISSR) markers were employed to investigate the genetic diversity and variability of 115 individuals belonging to two naturally distributed populations of this variety, which classified by habitat. Genetic diversity at the taxon level was high (HeT = 0.284 and PPBT = 97.2 %).   The result showed lightly higher genetic diversity in population in Lac Duong region (HeLD= 0.228 and PPBLD = 81.5 %) as compared to those located in Dam Rong region (HeDR= 0.213 and PPBDR = 79.4 %). The interpopulation gene differentiation was high (GST Total = 0.221) with the genetic distance among populations was DLD-DR = 0.191. Gene flow within populations was Nm = 0.8793. In Lac Duong population, the genetic diversity of older group (HeLD O = 0.233; PPBLD O = 77.1%) was higher than of younger group (HeLD Y = 0.214; PPBLD Y = 72.4 %) and the intergroup gene differentiation was GSTDL = 0.0205 with the genetic distance between these two group was DLD O-Y  = 0.0061 showed the risk of reduction in genetic diversity. In Dam Rong population, the genetic diversity of older group (HeDR O = 0.204; PPBDR O = 75.2 %) was equal to younger group (HeDR Y = 0.209; PPBDR Y = 72.7 %) and the intergroup gene differentiation was GSTDR = 0.0304 with the genetic distance between them was DDR O-Y = 0.01393 showed the stability in genetic diversity. Data for genetic diversity and variation from this study can be used to further investigate and protect this variety for conservation and development purposes and for sustainable exploiting and use of these valuable natural resources.


2019 ◽  
Author(s):  
Nnamdi Ifechukwude Chidi ◽  
Adedotun Adeyinka Adekunle ◽  
Temitope Oluwaseun Samuel ◽  
Emmanuel Ifechukwude Eziashi ◽  
David Okeh Igwe

Abstract Background Improving oil palm in Nigeria for food security and subsequent export requires a better understanding of the genetic diversity among oil palm progenies tolerant and susceptible to Fusarium wilt disease. In view of the limitations of the orthodox method used in screening this disease, and the advantages of molecular markers, fourteen (14) Inter-simple sequence repeat (ISSR) DNA markers were applied to evaluate the genetic diversity, population structure and cluster resolutions of alleles responsible for tolerance of 560 Elaeis guineensis Jacq palms representing 8 different progenies distributed across NigeriaResults The amplification product revealed a moderately high level of genetic diversity with a total of 46 alleles identified, resulting in an average of 4.9091 alleles per locus detected between the oil palm progenies. Polymorphic information content (PIC) values varied between 0.3706-0.7861, with a mean value of 0.6829. The genetic diversity values ranged from 0.4063-0.8125 with a mean of 0.7216, while the major allele frequency ranged from 0.2500- 0.7500 with a mean value of 0.3750. Shannon's information index (I), Nei's gene diversity (H), and the effective number of alleles (Ne) had values of 0.6931, 0.5000, and 2.000, respectively. The genetic diversity was highest in progeny 3023, and lowest in progeny 4189. Mean values of the total gene diversity (Ht), gene diversity within the population (Hs) of the progenies, coefficient of gene differentiation among the progenies (Gst) and level of gene flow (Nm) were 0.4899, 0.3520, 0.2815 and 1.2764, respectively. The dendrogram clustered the progenies into six major clusters, while Principal Component Analysis (PCA) grouped the progenies into five clusters. PCA further identified the coordinate positions of tolerant and susceptible alleles of oil palm progeniesConclusion This study confirmed the identification of the coordinate positions of tolerant alleles in the gene loci, which could be exploited by breeders to developing tolerant oil palm seedlings.


2019 ◽  
Vol 51 (5) ◽  
Author(s):  
Huifang Cao ◽  
Qiang Lin ◽  
Peiwang Li ◽  
Jingzhen Chen ◽  
Changzhu Li ◽  
...  

2019 ◽  
Vol 20 (8) ◽  
Author(s):  
Ni Luh Arpiwi ◽  
I Gusti Ayu Sugi Wahyuni ◽  
I Ketut Muksin

Abstract. Arpiwi NL, Wahyuni IGAS, Muksin IK. 2019. Genetic diversity of Pongamia pinnata in Bali, Indonesia using Inter Simple Sequence Repeat markers. Biodiversitas 20: 2134-2142. Pongamia pinnata (L.) Pierre is a member of family Leguminosae that produces seed oil for biodiesel feedstock. The aim of the present study was to determine genetic diversity of pongamia trees that grow in Bali using Inter Simple Sequence Repeat (ISSR) markers. This study is important to support the breeding program for the improvement of the biodiesel producing species. Leaf samples were taken from 26 pongamia trees grown on northern and southern coastal areas of Bali. Genomic DNA was isolated from fresh leaves sample and was amplified by Polymerase Chain Reaction (PCR) using 9 ISSR primers. The banding patterns of DNA after PCR were scored and tabulated into a binary matrix. Genetic distance was generated by pairwise distance using composite maximum likelihood. A dendrogram was constructed using Unweighted Pair Group Method Arithmetic (UPGMA) method. The binary matrix was further analyzed for Nonmetric Multidimensional Scaling (NMDS) with Primer E V.6 software. DNA concentrations ranged from 98.59-100.55 ng/μL with sufficient quality for PCR. The number of alleles for 9 primers was 43, the number of the polymorphic band was 35, and the number of monomorphic bands was 8. Percentage of polymorphism ranged from 50 to 100%. Cluster analysis of 26 DNA of pongamia trees showed that the trees were grouped into two, namely group I and II. Group I consisted of two trees only, namely Uma Anyar 1 and Penarukan 1. Group II consisted of 24 pongamia trees which were divided into 3 subgroups, namely IIA, IIB, and IIC with close genetic distance. Analysis of NMDS supported cluster analysis that 23 out of 26 pongamia trees had close genetic distance, and possibly they come from a similar source. Genetic diversity of pongamia in Bali needs to be widen possibly by the introduction of new planting materials from across Indonesia or seed procurement from different sources.


Sign in / Sign up

Export Citation Format

Share Document