Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production

AAPG Bulletin ◽  
2007 ◽  
Vol 91 (1) ◽  
pp. 51-67 ◽  
Author(s):  
Lourdes B. Colmenares ◽  
Mark D. Zoback
2017 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Kathryn Bills Walsh

This case presents the stakeholder conflicts that emerge during the development and subsequent reclamation of abandoned natural gas wells in Wyoming where split estate, or the separation of surface land and mineral rights from one another, occurs. From 1998 to 2008, the Powder River Basin of northeastern Wyoming experienced an energy boom as a result of technological innovation that enabled the extraction of coalbed methane (CBM). The boom resulted in over 16,000 wells being drilled in this 20,000 square-mile region in a single decade. As of May 2017, 4,149 natural gas wells now sit orphaned in Wyoming as a result of industry bankruptcy and abandonment. The current orphaned wells crisis was partially enabled by the patchwork of surface and mineral ownership in Wyoming that is a result of a legal condition referred to as split estate. As the CBM boom unfolded in this landscape and then began to wane, challenges emerged most notably surrounding stalled reclamation activities. This case illuminates these challenges highlighting two instances when split estate contributed to issues between landowners and industry operators which escalated to litigation.


2020 ◽  
Vol 38 (5) ◽  
pp. 1387-1408
Author(s):  
Yang Chen ◽  
Dameng Liu ◽  
Yidong Cai ◽  
Jingjie Yao

Hydraulic fracturing has been widely used in low permeability coalbed methane reservoirs to enhance gas production. To better evaluate the hydraulic fracturing curve and its effect on gas productivity, geological and engineering data of 265 development coalbed methane wells and 14 appraisal coalbed methane wells in the Zhengzhuang block were investigated. Based on the regional geologic research and statistical analysis, the microseismic monitoring results, in-situ stress parameters, and gas productivity were synthetically evaluated. The results show that hydraulic fracturing curves can be divided into four types (descending type, stable type, wavy type, and ascending type) according to the fracturing pressure and fracture morphology, and the distributions of different type curves have direct relationship with geological structure. The vertical in-situ stress is greater than the closure stress in the Zhengzhuang block, but there is anomaly in the aggregation areas of the wavy and ascending fracturing curves, which is the main reason for the development of multi-directional propagated fractures. The fracture azimuth is consistent with the regional maximum principle in-situ stress direction (NE–NEE direction). Furthermore, the 265 fracturing curves indicate that the coalbed methane wells owned descending, and stable-type fracturing curves possibly have better fracturing effect considering the propagation pressure gradient (FP) and instantaneous shut-in pressure (PISI). Two fracturing-productivity patterns are summarized according to 61 continuous production wells with different fracturing type and their plane distribution, which indicates that the fracturing effect of different fracturing curve follows the pattern: descending type > stable type > wavy type > ascending type.


2018 ◽  
Vol 36 (6) ◽  
pp. 1629-1644 ◽  
Author(s):  
Guozhong Hu ◽  
Chao Sun ◽  
Mingfei Sun ◽  
Wei Qin ◽  
Jianshe Linghu

Coal and gas outbursts mostly occur during mining at geostructural belts. Pre-drainage coalbed methane using hydraulic fracturing is one of the methods to prevent outbursts. However, the coal in geostructural belts is to be soft and crushed with special mechanical properties and pore structure. To explore the feasibility of hydraulic fracturing in geostructural belts, a field investigation on enhanced coalbed methane using hydraulic fracturing with vertical well was conducted at the Yangquan Coalfield, China. This case puts forward a method for the location selection of vertical well in geostructural belts. In addition, a triple-control technology for hydraulic fracturing, which is characterized by pressure control, flow control and sand ratio control of fracturing fluid, is presented. The results show that the average gas production and maximum gas drainage capacity of the test well were 5.67 and 12.88 times than those of the regular well, respectively, achieving good drainage effects.


2020 ◽  
Author(s):  
Qingling Tian ◽  
Chunsheng Hao ◽  
Junjun Li ◽  
Wei Wang

Abstract Water sensitivity exists in reservoir during traditional hydraulic fracturing. Nitrogen shock fracturing was put forward to solve these problems. By suddenly pushing high-energied nitrogen into perforated casing ,This technology clears the near-wellbore way gas out. A set of down-hole tool string, together with the fracturing ground units and nitrogen shock fracturing project, form a nitrogen shock fracturing system. The on-site researches show that this kind of system can do the nitrogen shock fracturing as designed. It actually makes the gas production better. In the future researches, we are committed to improve this technology to suit for more geological condition .


Sign in / Sign up

Export Citation Format

Share Document