Abstract: The Source Rocks of the Mesozoic Petroleum Systems of Argentina: A Comparative Overview on their Geochemistry, Paleoenvironments and Hydrocarbon Generation Patterns 

AAPG Bulletin ◽  
1998 ◽  
Vol 82 (1998) ◽  
Author(s):  
Villar, H. J., G. A. Laffitte and L
2022 ◽  
pp. 1-42
Author(s):  
Xiaojun Zhu ◽  
Jingong Cai ◽  
Feng Liu ◽  
Qisheng Zhou ◽  
Yue Zhao ◽  
...  

In natural environments, organic-clay interactions are strong and cause organo-clay composites (a combination between organic matter [OM] and clay minerals) to be one of the predominant forms for OM occurrence, and their interactions greatly influence the hydrocarbon (HC) generation of OM within source rocks. However, despite occurring in nature, dominating the OM occurrence, and having unique HC generation ways, organo-clay composites have rarely been investigated as stand-alone petroleum precursors. To improve this understanding, we have compared the Rock-Eval pyrolysis parameters derived from more than 100 source rocks and their corresponding <2 μm clay-sized fractions (representing organo-clay composites). The results show that all of the Rock-Eval pyrolysis parameters in bulk rocks are closely positively correlated with those in their clay-sized fractions, but in clay-sized fractions the quality of OM for HC generation is poorer, in that the pyrolysable organic carbon levels and hydrogen index values are lower, whereas the residual organic carbon levels are higher than those in bulk rocks. Being integrated with the effects of organic-clay interactions on OM occurrence and HC generation, our results suggest that organo-clay composites are stand-alone petroleum precursors for HC generation occurring in source rocks, even if the source rocks exist in great varieties in their attributes. Our source material for HC generation comprehensively integrates the original OM occurrence and HC generation behavior in natural environments, which differs from kerogen and is much closer to the actual source material of HC generation in source rocks, and it calls for further focus on organic-mineral interactions in studies of petroleum systems.


2020 ◽  
Author(s):  
Qi-An Meng ◽  
Xue Wang ◽  
Qiu-Li Huo ◽  
Zhong-Liang Dong ◽  
Zhen Li ◽  
...  

Abstract Re–Os radiometric dating of crude oil can be used to constrain the timing of hydrocarbon generation, migration or charge. This approach has been successfully applied to marine petroleum systems; however, this study reports on its application to lacustrine-sourced natural crude oils. Oil samples from multiple wells producing from the Cretaceous Nantun Formation in the Wuerxun-Beier depression of the Hailar Basin in NE China were analysed. Subsets of the Re–Os data are compatible with a Cretaceous hydrocarbon generation event (131.1 ± 8.4 Ma) occurring within 10 Myr of deposition of the Nantun Formation source rocks. In addition, two younger age trends of 54 ± 12 Ma and 1.28 ± 0.69 Ma can be regressed from the Re–Os data, which may reflect the timing of subsequent hydrocarbon generation events. The Re–Os geochronometer, when combined with complementary age dating techniques, can provide direct temporal constraints on the evolution of petroleum system in a terrestrial basin.


2017 ◽  
Vol 57 (2) ◽  
pp. 755 ◽  
Author(s):  
Lisa Hall ◽  
Emmanuelle Grosjean ◽  
Irina Borissova ◽  
Chris Southby ◽  
Ryan Owens ◽  
...  

Interpretation of newly acquired seismic data in the northern Houtman Sub-basin (Perth Basin) suggests the region contains potential source rocks similar to those in the producing Abrolhos Sub-basin. The regionally extensive late Permian–Early Triassic Kockatea Shale has the potential to contain the oil-prone Hovea Member source interval. Large Permian syn-rift half-graben, up to 10 km thick, are likely to contain a range of gas-prone source rocks. Further potential source rocks may be found in the Jurassic–Early Cretaceous succession, including the Cattamarra Coal Measures, Cadda shales and mixed sources within the Yarragadee Formation. This study investigated the possible maturity and charge history of these different source rocks. A regional pseudo-3D petroleum systems model was constructed using new seismic interpretations. Heat flow was modelled using crustal structure and possible basement composition determined from potential field modelling, and subsidence analysis was used to investigate lithospheric extension through time. The model was calibrated using temperature and maturity data from nine wells in the Houtman and Abrolhos sub-basins. Source rock properties are assigned based on an extensive review of total organic carbon, Rock Eval and kinetic data for the offshore northern Perth Basin. Petroleum systems analysis results show that Permian, Triassic and Early Jurassic source rocks may have generated large cumulative volumes of hydrocarbons across the northern Houtman Sub-basin, whereas the Middle Jurassic–Cretaceous sources remain largely immature. However, the timing of hydrocarbon generation and expulsion with respect to trap formation and structural reactivation is critical for the successful development and preservation of hydrocarbon accumulations.


2016 ◽  
Vol 56 (1) ◽  
pp. 483 ◽  
Author(s):  
Nadege Rollet ◽  
Emmanuelle Grosjean ◽  
Dianne Edwards ◽  
Tehani Palu ◽  
Steve Abbott ◽  
...  

The Browse Basin hosts large gas accumulations, some of which are being developed for conventional liquefied natural gas (LNG). Extensive appraisal drilling has been focused in the central Caswell Sub-basin at Ichthys and Prelude, and along the extended Brecknock-Scott Reef Trend; whereas elsewhere the basin remains underexplored. To provide a better understanding of regional hydrocarbon prospectivity, the sequence stratigraphy of the Cretaceous succession and structural framework were analysed to determine the spatial relationship of reservoir and seal pairs, and those areas of enhanced source rock development. The sequence stratigraphic interpretation is based upon a common North West Shelf stratigraphic framework that has been developed in conjunction with industry, and aligned with the international time scale. Sixty key wells and 2D and 3D seismic data have been interpreted to produce palaeogeographic maps and depositional models for the Cretaceous succession. Geochemical analyses have characterised the molecular and stable isotopic signatures of fluids and correlated them with potential source rocks. The resultant petroleum systems model provides a more detailed understanding of source rock maturity, organic richness and hydrocarbon-generation potential in the basin. The model reveals that many accumulations have a complex charge history, with the mixing of hydrocarbon fluids from multiple Mesozoic source rocks, including the Lower–Middle Jurassic J10–J20 supersequences (Plover Formation), Upper Jurassic–Lowermost Cretaceous J30–K10 supersequences (Vulcan Formation), and Lower Cretaceous K20–K30 supersequences (Echuca Shoals Formation). Burial history and hydrocarbon expulsion models, applied to these Jurassic and Cretaceous supersequences, suggest that numerous petroleum systems are effective within the basin. For example, hydrocarbons are interpreted to have been generated from several source pods within the southern Caswell Sub-basin with migration continuing onto the Yampi Shelf, an area of renewed exploration interest.


2020 ◽  
pp. 1-49
Author(s):  
Nelson Sánchez ◽  
Jael pacheco ◽  
Mario Alberto Guzman-Vega ◽  
Andrés Mora ◽  
Brian Horton

The Eastern Foothills in the Eastern Cordillera of Colombia have been an important oil producing region since the discovery of the Cupiagua and Cusiana fields. Several organic rich Cretaceous-Paleogene units have been considered to be the principal source rocks. The Aptian Fomeque Formation and the Cenomanian-Coniacian Chipaque Formation and the Paleocene Los Cuervos Formation. We modeled the petroleum systems of these three source units to characterize the hydrocarbon generation and accumulation processes within the basin. We found that the maturation history of the system was largely influenced by changes in crustal deformation produced during the tectonic evolution of the Colombian Andes. The Aptian Fomeque Formation. reached the oil window during the Paleocene in the south and the Eocene in the north. The Cenomanian-Coniacian Chipaque Formation reached the oil window in the south by the Early Oligocene and in the north by the Late Oligocene. In contrast, the Paleocene Los Cuervos Formation entered the oil generation window by the end of the Oligocene in both the North and South areas. Our model suggests that the charge history of the main reservoirs has a diverse history also. The shallow marine Albian sandstones were charged during Oligocene to Miocene. In contrast, the proven reservoirs in the area (including the Upper Cretaceous shallow marine reservoirs, the Paleocene fluvial reservoirs and the Eocene fluvial-estuarine reservoirs) were filled by the end of the Miocene, with a second episode of recent (and perhaps active) filling of the Eocene reservoirs from the Paleocene source rocks.The results suggest that petroleum systems modeling is useful not only to predict and characterize generation and migration processes, but also provides insights into the origin and evolution of present-day subsurface structures and the distribution of oil reservoirs in structurally complex areas such as the Colombian foothills.


2021 ◽  
Vol 44 (3) ◽  
pp. 349-384 ◽  
Author(s):  
V. Aghayeva ◽  
R. F. Sachsenhofer ◽  
C.G.C. van Baak ◽  
A. Bechtel ◽  
T. M. Hoyle ◽  
...  

2006 ◽  
Vol 51 (23) ◽  
pp. 2885-2891 ◽  
Author(s):  
Xinhua Geng ◽  
Ansong Geng ◽  
Yongqiang Xiong ◽  
Jinzhong Liu ◽  
Haizu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document