scholarly journals Rhenium–osmium (Re–Os) geochronology of crude oil from lacustrine source rocks of the Hailar Basin, NE China

2020 ◽  
Author(s):  
Qi-An Meng ◽  
Xue Wang ◽  
Qiu-Li Huo ◽  
Zhong-Liang Dong ◽  
Zhen Li ◽  
...  

Abstract Re–Os radiometric dating of crude oil can be used to constrain the timing of hydrocarbon generation, migration or charge. This approach has been successfully applied to marine petroleum systems; however, this study reports on its application to lacustrine-sourced natural crude oils. Oil samples from multiple wells producing from the Cretaceous Nantun Formation in the Wuerxun-Beier depression of the Hailar Basin in NE China were analysed. Subsets of the Re–Os data are compatible with a Cretaceous hydrocarbon generation event (131.1 ± 8.4 Ma) occurring within 10 Myr of deposition of the Nantun Formation source rocks. In addition, two younger age trends of 54 ± 12 Ma and 1.28 ± 0.69 Ma can be regressed from the Re–Os data, which may reflect the timing of subsequent hydrocarbon generation events. The Re–Os geochronometer, when combined with complementary age dating techniques, can provide direct temporal constraints on the evolution of petroleum system in a terrestrial basin.

2022 ◽  
pp. 1-42
Author(s):  
Xiaojun Zhu ◽  
Jingong Cai ◽  
Feng Liu ◽  
Qisheng Zhou ◽  
Yue Zhao ◽  
...  

In natural environments, organic-clay interactions are strong and cause organo-clay composites (a combination between organic matter [OM] and clay minerals) to be one of the predominant forms for OM occurrence, and their interactions greatly influence the hydrocarbon (HC) generation of OM within source rocks. However, despite occurring in nature, dominating the OM occurrence, and having unique HC generation ways, organo-clay composites have rarely been investigated as stand-alone petroleum precursors. To improve this understanding, we have compared the Rock-Eval pyrolysis parameters derived from more than 100 source rocks and their corresponding <2 μm clay-sized fractions (representing organo-clay composites). The results show that all of the Rock-Eval pyrolysis parameters in bulk rocks are closely positively correlated with those in their clay-sized fractions, but in clay-sized fractions the quality of OM for HC generation is poorer, in that the pyrolysable organic carbon levels and hydrogen index values are lower, whereas the residual organic carbon levels are higher than those in bulk rocks. Being integrated with the effects of organic-clay interactions on OM occurrence and HC generation, our results suggest that organo-clay composites are stand-alone petroleum precursors for HC generation occurring in source rocks, even if the source rocks exist in great varieties in their attributes. Our source material for HC generation comprehensively integrates the original OM occurrence and HC generation behavior in natural environments, which differs from kerogen and is much closer to the actual source material of HC generation in source rocks, and it calls for further focus on organic-mineral interactions in studies of petroleum systems.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1043
Author(s):  
Jinliang Zhang ◽  
Jiaqi Guo ◽  
Yang Li ◽  
Zhongqiang Sun

The Changling Depression is the largest and most resource-abundant reservoir in the South Songliao Basin, NE China. The petroleum evolution rules in the Lower Cretaceous deep tight sandstone reservoir are unclear. In this study, 3D basin modeling is performed to analyze the large-scale petroleum stereoscopic migration and accumulation history. The Changling Depression has a complex fault system and multiple tectonic movements. The model is calibrated by the present formation temperatures and observed maturity (vitrinite reflectance). We consider (1) three main erosion episodes during the burial history, one during the Early Cretaceous and two during the Late Cretaceous; (2) the regional heat flow distribution throughout geological history, which was calibrated by abundant measurement data; and (3) a tight sandstone porosity model, which is calibrated by experimental petrophysical parameters. The maturity levels of the Lower Cretaceous source rocks are reconstructed and showed good gas-generation potential. The highest maturity regions are in the southwestern sag and northern sag. The peak hydrocarbon generation period contributed little to the reservoir because of a lack of seal rocks. Homogenization temperature analysis of inclusions indicated two sets of critical moments of gas accumulation. The hydrocarbon filling in the Haerjin and Shuangtuozi structures occurred between 80 Ma and 66 Ma, while the Dalaoyefu and Fulongquan structures experienced long-term hydrocarbon accumulation from 100 Ma to 67 Ma. The homogenization temperatures of the fluid inclusions may indicate a certain stage of reservoir formation and, in combination with the hydrocarbon-accumulation simulation, can distinguish leakage and recharging events.


2020 ◽  
Vol 17 (6) ◽  
pp. 1491-1511
Author(s):  
Jun-Qing Chen ◽  
Xiong-Qi Pang ◽  
Song Wu ◽  
Zhuo-Heng Chen ◽  
Mei-Ling Hu ◽  
...  

AbstractHydrocarbon expulsion occurs only when pore fluid pressure due to hydrocarbon generation in source rock exceeds the force against migration in the adjacent carrier beds. Taking the Middle–Upper Ordovician carbonate source rock of Tarim Basin in China as an example, this paper proposes a method that identifies effective carbonate source rock based on the principles of mass balance. Data from the Well YW2 indicate that the Middle Ordovician Yijianfang Formation contains effective carbonate source rocks with low present-day TOC. Geological and geochemical analysis suggests that the hydrocarbons in the carbonate interval are likely self-generated and retained. Regular steranes from GC–MS analysis of oil extracts in this interval display similar features to those of the crude oil samples in Tabei area, indicating that the crude oil probably was migrated from the effective source rocks. By applying to other wells in the basin, the identified effective carbonate source rocks and non-source rock carbonates can be effectively identified and consistent with the actual exploration results, validating the method. Considering the contribution from the identified effective source rocks with low present-day TOC (TOCpd) is considered, the long-standing puzzle between the proved 3P oil reserves and estimated resources in the basin can be reasonably explained.


1994 ◽  
Vol 131 (2) ◽  
pp. 181-190 ◽  
Author(s):  
John Parnell ◽  
Geng Ansong ◽  
Fu Jiamo ◽  
Sheng Guoying

AbstractVeins of solid bitumen occur in Cretaceous sandstones at the northwest margin of the Junggar Basin, China. The bitumen has a low aromaticity and a composition comparable to gilsonite. The bitumen contains abundant steranes and terpanes, and β-carotane, although most n- and i- alkanes have been removed, which is characteristic of the local crude oil. The sterane and triterpane maturity parameters show that the bitumen, local crude oil, and source rocks are all mature. Bitumen–wallrock relationships suggest that the host sandstone was not completely consolidated at the time of emplacement of the bitumen veins, although bitumen emplacement was a relatively late diagenetic event. The burial history for the northwest Junggar Basin shows that hydrocarbon generation from the assumed upper Permian source rocks commenced in late Triassic/early Jurassic times and suggests that rapid hydrocarbon generation may have resulted in overpressure contributing to the bitumen emplacement.


GeoArabia ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 209-244 ◽  
Author(s):  
Moujahed I. Al-Husseini

ABSTRACT The Middle Eastern Infracambrian Debate offers specific choices between profoundly different tectono-stratigraphic models that have important scientific and petroleum exploration implications worldwide. A crucial first step in the Debate is choosing between the interpretations of zircon geochronology (Cryogenian Model) or regional chrono-stratigraphy based on much younger age-dating by alternative radiometric techniques (e.g. K-Ar, Rb-Sr, Ar/Ar; Ediacaran Model). The interpretation of zircon geochronology implies Oman’s oldest diamictites of the Abu Mahara Group represent the Sturtian (ca. 720–700 Ma) and Miranoan (ca. 663–636 Ma) glaciations of the Cryogenian Period (850–630 Ma) separated by the ca. 50 My Fiq-Ghubrah Hiatus. The Cryogenian Model implies three phases of rifting in the same regions between ca. 723–530 Ma, and another younger but disputed ca. 30–40 My Shuram-Khufai Hiatus occurring in a tectonically quiescent platform setting (post-glacial Nafun Group’s fine clastics and carbonates). This combined essay and book review of Global Neoproterozoic Petroleum Systems disputes the interpretation of zircon geochronology to establish absolute time for Oman’s oldest rocks. It argues for the single-rift-without-hiatus Ediacaran Model based on ages of basement and volcanic rocks using alternative radiometric techniques in Jordan, Oman and Saudi Arabia. Oman’s Hadash Formation and coeval Mirbat Cap Carbonate are believed to provide an important correlative marker that recorded the start of the great sea-level rise of the Nafun Transgression at ca. 572 Ma, not 636 Ma. The Transgression was due to the melt-out of the late Ediacaran Varanginian Glaciation (represented in Oman by the diamictites of the Ayn, combined Fiq-Ghubrah and subsurface Ghadir Manqil formations, all of the Abu Mahara Group, deposited between ca. 585–572 Ma), not the Sturtian and Miranoan glaciations. The deep-marine organic-rich shales and siliciclastics of Oman’s Masirah Bay Formation (coeval Arkahawl Formation of Mirbat Group) are syn-rift and reflect the Nafun Transgression spilling beyond the rift basins and their surrounding lowlands. As proposed in the Middle East Geologic Time Scale 2010 and GeoArabia’s Infracambrian Debate, the time interval ca. 585–530 Ma can best be cast in terms of transgressive-regressive chrono-sequences in a regional tectono-stratigraphic extensional framework.


2017 ◽  
Vol 57 (2) ◽  
pp. 755 ◽  
Author(s):  
Lisa Hall ◽  
Emmanuelle Grosjean ◽  
Irina Borissova ◽  
Chris Southby ◽  
Ryan Owens ◽  
...  

Interpretation of newly acquired seismic data in the northern Houtman Sub-basin (Perth Basin) suggests the region contains potential source rocks similar to those in the producing Abrolhos Sub-basin. The regionally extensive late Permian–Early Triassic Kockatea Shale has the potential to contain the oil-prone Hovea Member source interval. Large Permian syn-rift half-graben, up to 10 km thick, are likely to contain a range of gas-prone source rocks. Further potential source rocks may be found in the Jurassic–Early Cretaceous succession, including the Cattamarra Coal Measures, Cadda shales and mixed sources within the Yarragadee Formation. This study investigated the possible maturity and charge history of these different source rocks. A regional pseudo-3D petroleum systems model was constructed using new seismic interpretations. Heat flow was modelled using crustal structure and possible basement composition determined from potential field modelling, and subsidence analysis was used to investigate lithospheric extension through time. The model was calibrated using temperature and maturity data from nine wells in the Houtman and Abrolhos sub-basins. Source rock properties are assigned based on an extensive review of total organic carbon, Rock Eval and kinetic data for the offshore northern Perth Basin. Petroleum systems analysis results show that Permian, Triassic and Early Jurassic source rocks may have generated large cumulative volumes of hydrocarbons across the northern Houtman Sub-basin, whereas the Middle Jurassic–Cretaceous sources remain largely immature. However, the timing of hydrocarbon generation and expulsion with respect to trap formation and structural reactivation is critical for the successful development and preservation of hydrocarbon accumulations.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Yunpeng Shan ◽  
Hongjun Wang ◽  
Liangjie Zhang ◽  
Penghui Su ◽  
Muwei Cheng ◽  
...  

In order to provide paleofluid evidence of hydrocarbon accumulation periods in the Amu Darya Right Bank Block, microexperiments and simulations related to the Middle-Upper Jurassic Callovian-Oxfordian carbonate reservoirs were performed. On the basis of petrographic observation, the diagenetic stages were divided by cathodoluminescence, and the entrapment stages of fluid inclusions were divided by laser Raman experiment and UV epifluorescence. The hydrocarbon generation (expulsion) curve and burial (thermal) history curve of source rocks were simulated by using real drilling data coupled with geochemical parameters of source rocks, such as total organic carbon (TOC) and vitrinite reflectance ( R o ). The above results were integrated with microthermometry of fluid inclusions by inference the timing of hydrocarbon migration into the carbonate reservoirs. The horizon-flattening technique was used to process the measured seismic profile and restore the structural evolution profile. Four diagenetic periods and three hydrocarbon accumulation periods were identified. (i) For Syntaxial stage, the fluid captured by the overgrowing cement around particles is mainly seawater; (ii) for (Early) Mesogenetic burial stage, the calcite cements began to capture hydrocarbon fluids and show yellow fluorescence under UV illumination; (iii) for (Late) Mesogenetic burial stage, two sets of cleavage fissures developed in massive calcite cements, and oil inclusions with green fluorescence were entrapped in the crystal; (iv) for Telogenetic burial stage, blue fluorescent inclusions along with hydrocarbon gas inclusions developed in dully luminescent calcite veins. Based on the accurate division of hydrocarbon migration and charging stages, combined with the structural evolution history of the traps, the hydrocarbon accumulation model was established. Because two of the three sets of source rocks are of marine origin, resulting in the lack of vitrinite in the kerogen of those source rocks, there may be some deviation between the measured value of R o and the real value. Some systematic errors may occur in the thermal history and hydrocarbon generation (expulsion) history of the two sets of source rocks. Due to the limitations of seismic horizon-flattening technique—such as the inability to accurately recover the inclined strata thickness and horizontal expansion of strata—the final shape of the evolution process of structural profile may also deviate from the real state in geological history. The accumulation model established in this study was based upon the fluid inclusion experiments, which can effectively characterize the forming process of large condensate gas reservoirs in the Amu Darya Right Bank Block and quantify the timing of hydrocarbon charging. However, the hydrocarbon migration and accumulation model does not take the oil-source correlation into account, but only the relationship between the mature state of source rocks and the timing of hydrocarbon charging into the reservoirs. Subsequent research needs to conduct refined oil-source correlation to reveal the relationship between gas, condensate, source rocks, and recently discovered crude oil and more strictly constrain and modify the accumulation model, so as to finally disclose the origin of the crude oil and oil reservoir forming process in the Amu Darya Right Bank Block, evaluate the future exploration potential, and point out the direction of various hydrocarbon resources (condensate gas and crude oil).


2016 ◽  
Vol 56 (1) ◽  
pp. 483 ◽  
Author(s):  
Nadege Rollet ◽  
Emmanuelle Grosjean ◽  
Dianne Edwards ◽  
Tehani Palu ◽  
Steve Abbott ◽  
...  

The Browse Basin hosts large gas accumulations, some of which are being developed for conventional liquefied natural gas (LNG). Extensive appraisal drilling has been focused in the central Caswell Sub-basin at Ichthys and Prelude, and along the extended Brecknock-Scott Reef Trend; whereas elsewhere the basin remains underexplored. To provide a better understanding of regional hydrocarbon prospectivity, the sequence stratigraphy of the Cretaceous succession and structural framework were analysed to determine the spatial relationship of reservoir and seal pairs, and those areas of enhanced source rock development. The sequence stratigraphic interpretation is based upon a common North West Shelf stratigraphic framework that has been developed in conjunction with industry, and aligned with the international time scale. Sixty key wells and 2D and 3D seismic data have been interpreted to produce palaeogeographic maps and depositional models for the Cretaceous succession. Geochemical analyses have characterised the molecular and stable isotopic signatures of fluids and correlated them with potential source rocks. The resultant petroleum systems model provides a more detailed understanding of source rock maturity, organic richness and hydrocarbon-generation potential in the basin. The model reveals that many accumulations have a complex charge history, with the mixing of hydrocarbon fluids from multiple Mesozoic source rocks, including the Lower–Middle Jurassic J10–J20 supersequences (Plover Formation), Upper Jurassic–Lowermost Cretaceous J30–K10 supersequences (Vulcan Formation), and Lower Cretaceous K20–K30 supersequences (Echuca Shoals Formation). Burial history and hydrocarbon expulsion models, applied to these Jurassic and Cretaceous supersequences, suggest that numerous petroleum systems are effective within the basin. For example, hydrocarbons are interpreted to have been generated from several source pods within the southern Caswell Sub-basin with migration continuing onto the Yampi Shelf, an area of renewed exploration interest.


2020 ◽  
pp. 1-49
Author(s):  
Nelson Sánchez ◽  
Jael pacheco ◽  
Mario Alberto Guzman-Vega ◽  
Andrés Mora ◽  
Brian Horton

The Eastern Foothills in the Eastern Cordillera of Colombia have been an important oil producing region since the discovery of the Cupiagua and Cusiana fields. Several organic rich Cretaceous-Paleogene units have been considered to be the principal source rocks. The Aptian Fomeque Formation and the Cenomanian-Coniacian Chipaque Formation and the Paleocene Los Cuervos Formation. We modeled the petroleum systems of these three source units to characterize the hydrocarbon generation and accumulation processes within the basin. We found that the maturation history of the system was largely influenced by changes in crustal deformation produced during the tectonic evolution of the Colombian Andes. The Aptian Fomeque Formation. reached the oil window during the Paleocene in the south and the Eocene in the north. The Cenomanian-Coniacian Chipaque Formation reached the oil window in the south by the Early Oligocene and in the north by the Late Oligocene. In contrast, the Paleocene Los Cuervos Formation entered the oil generation window by the end of the Oligocene in both the North and South areas. Our model suggests that the charge history of the main reservoirs has a diverse history also. The shallow marine Albian sandstones were charged during Oligocene to Miocene. In contrast, the proven reservoirs in the area (including the Upper Cretaceous shallow marine reservoirs, the Paleocene fluvial reservoirs and the Eocene fluvial-estuarine reservoirs) were filled by the end of the Miocene, with a second episode of recent (and perhaps active) filling of the Eocene reservoirs from the Paleocene source rocks.The results suggest that petroleum systems modeling is useful not only to predict and characterize generation and migration processes, but also provides insights into the origin and evolution of present-day subsurface structures and the distribution of oil reservoirs in structurally complex areas such as the Colombian foothills.


Sign in / Sign up

Export Citation Format

Share Document