Intracontinental strike-slip faults as indicators for changing stress fields (Late Paleozoic of the Bohemian Massif, Germany): ABSTRACT

AAPG Bulletin ◽  
1996 ◽  
Vol 80 ◽  
Author(s):  
Frank Mattern
2020 ◽  
Author(s):  
Saskia Köhler ◽  
Florian Duschl ◽  
Hamed Fazlikhani ◽  
Daniel Köhn

<p>The Franconian Basin in SE Germany has seen a complex stress history indicative of several extensional and compressional phases e.g. the Iberia-Europe collision acting on a pre-faulted Variscan basement. Early Cretaceous extension is followed by Late Cretaceous inversion with syntectonic sedimentation and deformation increasing progressively from SW to NE culminating in the Franconian Line where basement rocks are thrusted over the Mesozoic cover. The development of this intracontinental fold-and-thrust belt is followed by Paleogene extension associated with the formation of the Eger Graben, which is then succeeded by a new compressional event as a consequence of the Alpine orogeny.</p><p>We use existing data from literature and geological maps and new field data to construct balanced cross-sections in order to reveal the architecture of the Cretaceous fold-and-thrust belt. In addition, we undertake paleostress analysis using a combination of fault slip information, veins and tectonic and sedimentary stylolites to identify stress events in the study area, as well as their nature and timing. Furthermore, we try to understand how basement faults influence younger faults in the cover sequence.</p><p>Our paleostress data indicates that at least five different stress events existed in Mesozoic to Cenozoic times (from old to young): (1) an N-S directed extensional stress field with E-W striking normal faults, (2) a NNE-SSW directed compressional stress field causing thrusting and folding of the cover sequence, (3) a strike slip regime with NE-SW compression and NW-SE extension, (4) an extensional event with NW-SE extension and the formation of ENE-WSW striking faults according to the formation of the Eger Graben in the E, and finally (5) a strike slip regime with NW-SE compression and NE-SW extension related to Alpine stresses. The geometry of faulting and deformation varies significantly over the regions with respect to the influence of and distance to inherited Variscan structures.</p><p>We argue that the extensional event of stress field (1) provides spacing for Early Cretaceous sedimentation in the Franconian Basin. This is followed by the creation of an intracontinental fold-and-thrust belt during stress fields (2) and (3) with a slight rotation of the main compressive stress during these events in Late Cretaceous. We associate the following extension to the development of the Eger Graben in Miocene time. Finally, a NW-SE directed compression related to Alpine stresses in an intracontinental strike-slip regime is following. Reconstruction of the Cretaceous fold-and-thrust belt reveals mainly fault propagation folding with deep detachments sitting below the cover sequence indicating thick-skinned tectonics. We argue that the Franconian Line is a thrust with a steeply dipping root that belongs to the same fold-and-thrust belt.</p>


2015 ◽  
Vol 664 ◽  
pp. 244-255 ◽  
Author(s):  
Eugenio E. Veloso ◽  
Rodrigo Gomila ◽  
José Cembrano ◽  
Rodrigo González ◽  
Erik Jensen ◽  
...  

1967 ◽  
Vol 4 (2) ◽  
pp. 299-321 ◽  
Author(s):  
D. K. Norris

The Queensway folds are an anticline–syncline pair in layered limestone and shale of the Ottawa Formation in the Ottawa – St. Lawrence Lowlands. They are parallel, flexural-slip folds with horizontal axes trending northwest, parallel to the surface trace of the Gloucester fault.Five principal fracture subpatterns were recognized in the fold-pair, caused by at least four geometrically distinct stress fields. The principal stress directions at failure for all five subpatterns coincided, moreover, with the three orthogonal fabric axes, and the maximum principal stress was either parallel or perpendicular to the fold axes and to the Gloucester fault.Slickenside striae on bedding and on fractures at an angle to bedding indicate two principal kinematic patterns in the fold-pair; the one arises from motion in the deformation plane as a consequence of the folding and the other from strike-slip motion perpendicular to that plane as a consequence of displacement on the Gloucester fault.Slickensides indicate that each bed was free to move relative to adjacent ones during folding and that the fundamental structural unit in flexural-slip folding is the bed. Model studies support the field data and indicate that the sense and magnitude of interbed slip in any structural position is dependent upon an integral of conditions throughout the fold-pair and that the fundamental fold unit is the anticline–syncline pair.


1997 ◽  
Vol 134 (5) ◽  
pp. 727-739 ◽  
Author(s):  
P. ALEKSANDROWSKI ◽  
R. KRYZA ◽  
S. MAZUR ◽  
J. ŻABA

The still highly disputable terrane boundaries in the Sudetic segment of the Variscan belt mostly seem to follow major strike-slip faults and shear zones. Their kinematics, expected to place important constraints on the regional structural models, is discussed in some detail. The most conspicuous is the WNW–ESE Intra-Sudetic Fault Zone, separating several different structural units of the West Sudetes. It showed ductile dextral activity and, probably, displacement magnitude of the order of tens to hundreds kilometres, during late Devonian(?) to early Carboniferous times. In the late Carboniferous (to early Permian?), the sense of motion on the Intra-Sudetic Fault was reversed in a semi-brittle to brittle regime, with the left-lateral offset on the fault amounting to single kilometres. The north–south trending Niemcza and north-east–southwest Skrzynka shear zones are left-lateral, ductile features in the eastern part of the West Sudetes. Similarly oriented (northeast–southwest to NNE–SSW) regional size shear zones of as yet undetermined kinematics were discovered in boreholes under Cenozoic cover in the eastern part of the Sudetic foreland (the Niedźwiedź and Nysa-Brzeg shear zones). One of these is expected to represent the northern continuation of the major Stare Mesto Shear Zone in the Czech Republic, separating the geologically different units of the West and East Sudetes. The Rudawy Janowickie Metamorphic Unit, assumed in some reconstructions to comprise a mostly strike-slip terrane boundary, is characterized by ductile fabric developed in a thrusting regime, modified by a superimposed normal-slip extensional deformation. Thrusting-related deformational fabric was locally reoriented prior to the extensional event and shows present-day strike-slip kinematics in one of the sub-units. The Sudetic Boundary Fault, although prominent in the recent structure and topography of the region, was not active as a Variscan strike-slip fault zone. The reported data emphasize the importance of syn-orogenic strike-slip tectonics in the Sudetes. The recognized shear sense is compatible with a strike-slip model of the northeast margin of the Bohemian Massif, in which the Kaczawa and Góry Sowie Units underwent late Devonian–early Carboniferous southeastward long-distance displacement along the Intra-Sudetic Fault Zone from their hypothetical original position within the Northern Phyllite Zone and the Mid-German Crystalline High of the German Variscides, respectively, and were juxtaposed with units of different provenance southwest of the fault. The Intra-Sudetic Fault Zone, together with the Elbe Fault Zone further south, were subsequently cut in the east and their eastern segments were displaced and removed by the younger, early to late Carboniferous, NNE–SSW trending, transpressional Moldanubian–Stare Mesto Shear Zone.


Sign in / Sign up

Export Citation Format

Share Document