Marine Source Rocks of New Zealand: ABSTRACT

AAPG Bulletin ◽  
1996 ◽  
Vol 80 ◽  
Author(s):  
Andrew P. Murray, C. Norgate, R. E.
2015 ◽  
Author(s):  
Benjamin R. Hines* ◽  
Todd Ventura ◽  
Michael F. Gazley ◽  
Kyle J. Bland ◽  
James S. Crampton ◽  
...  

Author(s):  
Niels Hemmingsen Schovsbo ◽  
Arne Thorshøj Nielsen

The Lower Palaeozoic succession in Scandinavia includes several excellent marine source rocks notably the Alum Shale, the Dicellograptus shale and the Rastrites Shale that have been targets for shale gas exploration since 2008. We here report on samples of these source rocks from cored shallow scientific wells in southern Sweden. The samples contain both free and sorbed hydrocarbon gases with concentrations significantly above the background gas level. The gases consist of a mixture of thermogenic and bacterially derived gas. The latter likely derives from both carbonate reduction and methyl fermentation processes. The presence of both thermogenic and biogenic gas in the Lower Palaeozoic shales is in agreement with results from past and present exploration activities; thermogenic gas is a target in deeply buried, gas-mature shales in southernmost Sweden, Denmark and northern Poland, whereas biogenic gas is a target in shallow, immature-marginally mature shales in south central Sweden. We here document that biogenic gas signatures are present also in gas-mature shallow buried shales in Skåne in southernmost Sweden.


1995 ◽  
Vol 13 (2-3) ◽  
pp. 245-252
Author(s):  
J M Beggs

New Zealand's scientific institutions have been restructured so as to be more responsive to the needs of the economy. Exploration for and development of oil and gas resources depend heavily on the geological sciences. In New Zealand, these activities are favoured by a comprehensive, open-file database of the results of previous work, and by a historically publicly funded, in-depth knowledge base of the extensive sedimentary basins. This expertise is now only partially funded by government research contracts, and increasingly undertakes contract work in a range of scientific services to the upstream petroleum sector, both in New Zealand and overseas. By aligning government-funded research programmes with the industry's knowledge needs, there is maximum advantage in improving the understanding of the occurrence of oil and gas resources. A Crown Research Institute can serve as an interface between advances in fundamental geological sciences, and the practical needs of the industry. Current publicly funded programmes of the Institute of Geological and Nuclear Sciences include a series of regional basin studies, nearing completion; and multi-disciplinary team studies related to the various elements of the petroleum systems of New Zealand: source rocks and their maturation, migration and entrapment as a function of basin structure and tectonics, and the distribution and configuration of reservoir systems.


Author(s):  
MALVIN BJORØY ◽  
PETER BARRY HALL ◽  
RITA LØBERG ◽  
JOSEPHINE ANN MCDERMOTT ◽  
NIGEL MILLS
Keyword(s):  

2008 ◽  
Vol 48 (1) ◽  
pp. 53 ◽  
Author(s):  
Chris Uruski ◽  
Callum Kennedy ◽  
Rupert Sutherland ◽  
Vaughan Stagpoole ◽  
Stuart Henrys

The East Coast of North Island, New Zealand, is the site of subduction of the Pacific below the Australian plate, and, consequently, much of the basin is highly deformed. An exception is the Raukumara Sub-basin, which forms the northern end of the East Coast Basin and is relatively undeformed. It occupies a marine plain that extends to the north-northeast from the northern coast of the Raukumara Peninsula, reaching water depths of about 3,000 m, although much of the sub-basin lies within the 2,000 m isobath. The sub-basin is about 100 km across and has a roughly triangular plan, bounded by an east-west fault system in the south. It extends about 300 km to the northeast and is bounded to the east by the East Cape subduction ridge and to the west by the volcanic Kermadec Ridge. The northern seismic lines reveal a thickness of around 8 km increasing to 12–13 km in the south. Its stratigraphy consists of a fairly uniformly bedded basal section and an upper, more variable unit separated by a wedge of chaotically bedded material. In the absence of direct evidence from wells and samples, analogies are drawn with onshore geology, where older marine Cretaceous and Paleogene units are separated from a Neogene succession by an allochthonous series of thrust slices emplaced around the time of initiation of the modern plate boundary. The Raukumara Sub-basin is not easily classified. Its location is apparently that of a fore-arc basin along an ocean-to-ocean collision zone, although its sedimentary fill must have been derived chiefly from erosion of the New Zealand land mass. Its relative lack of deformation introduces questions about basin formation and petroleum potential. Although no commercial discoveries have been made in the East Coast Basin, known source rocks are of marine origin and are commonly oil prone, so there is good potential for oil as well as gas in the basin. New seismic data confirm the extent of the sub-basin and its considerable sedimentary thickness. The presence of potential trapping structures and direct hydrocarbon indicators suggest that the Raukumara Sub-basin may contain large volumes of oil and gas.


2019 ◽  
Vol 104 ◽  
pp. 468-488 ◽  
Author(s):  
Sebastian Naeher ◽  
Christopher J. Hollis ◽  
Christopher D. Clowes ◽  
G. Todd Ventura ◽  
Claire L. Shepherd ◽  
...  

1988 ◽  
Vol 13 (1-3) ◽  
pp. 221-244 ◽  
Author(s):  
Malvin Bjorøy ◽  
Peter Barry Hall ◽  
Rita Løberg ◽  
Josephine Ann McDermott ◽  
Nigel Mills
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document