scholarly journals Summary of the Symposium on “Oil and gas from the Cenozoic non-marine source rocks in East Asia”

2005 ◽  
Vol 70 (1) ◽  
pp. 101-103 ◽  
Author(s):  
Noriyuki Suzuki
2021 ◽  
pp. M57-2017-42
Author(s):  
A. G. Doré ◽  
T. Dahlgren ◽  
M. J. Flowerdew ◽  
T. Forthun ◽  
J. O. Hansen ◽  
...  

AbstractThe south-central Barents Sea today comprises a shallow continental shelf with water depths mainly in the 200-400m range, straddling the Norway-Russia marine boundary. Geologically it consists of a stable platform (the Bjarmeland Platform), dissected by rifts of probable Late Carboniferous age, with a significant and geologically persistent basement high (the Fedynsky High) in its south-eastern part. The rifts are the ENE-WSW trending Nordkapp Basin, the similarly-trending but less clearly demarcated Ottar Basin, and the NW-SE Tiddlybanken Basin. The varying rift trends appear to reflect the orogenic grain patchwork of the basement (Caledonide and Timanide), and these basins were infilled with a variable facies assemblage including substantial Carboniferous-Permian halites.Massive sedimentary influx of fluvio-deltaic to shallow marine sediments took place in the Triassic, from the E and SE (Urals, Novaya Zemlya and western Siberia) and south (Baltic Shield), resulting in doming and diapirism in the areas of thickest salt, particularly in the rifts. The succeeding Jurassic, Cretaceous and Cenozoic successions are generally thin, locally thickening in rim synclines and in the NE of the area towards the deep basins flanking Novaya Zemlya. Reactivation of the halokinetic structures took place in the early Cenozoic, probably associated with the development of the NE Atlantic-Arctic Ocean linkage.Marine source rocks of Triassic and Late Jurassic age are present in the area, along with Carboniferous and Permian source rocks of uncertain effectiveness. Petroleum has been found in Jurassic and Triassic clastic reservoirs, including recent shallow Jurassic oil and gas discoveries. Although none are currently in production, near-future oil development is likely in Wisting discovery, on the western margin of the area. New exploration, including drilling, is currently taking place in the east of the area as a result of recent Norwegian and Russian licensing.


2009 ◽  
Vol 27 (2) ◽  
pp. 69-90 ◽  
Author(s):  
Xiuxiang Lü ◽  
Weiwei Jiao ◽  
Xinyuan Zhou ◽  
Jianjiao Li ◽  
Hongfeng Yu ◽  
...  

Diverse types of marine carbonate reservoirs have been discovered in the Tazhong Uplift, Tarim Basin, and late alteration of such reservoirs is obvious. The marine source rocks of the Cambrian-lower Ordovician and the middle-upper Ordovician provided abundant oil and gas for hydrocarbon accumulation. The hydrocarbons filled various reservoirs in multiple stages to form different types of reservoirs from late Caledonian to early Hercynian, from late Hercynian to early Indosininan and from late Yanshanian to Himalayan. All these events greatly complicated hydrocarbon accumulation. An analysis of the discovered carbonate reservoirs in the Tazhong Uplift indicated that the development of a reservoir was controlled by subaerial weathering and freshwater leaching, sedimentation, early diagenesis, and alteration by deep fluids. According to the origin and lateral distribution of reservoir beds, the hydrocarbon accumulation zones in the Tazhong area were identified as: karsted reservoirs, reef/bank reservoirs, dolomite interior reservoirs, and hydrothermal reservoirs. Such carbonate hydrocarbon accumulation zones are distributed mainly in specific areas of the Tazhong uplift, respectively. Because of differences in the mechanism of reservoir formation, the reservoir space, capability, type and distribution of reservoirs are often different in different carbonate hydrocarbon accumulation zones.


Author(s):  
N.I. Samokhvalov ◽  
◽  
K.V. Kovalenko ◽  
N.A. Skibitskaya ◽  
◽  
...  
Keyword(s):  

Author(s):  
Niels Hemmingsen Schovsbo ◽  
Arne Thorshøj Nielsen

The Lower Palaeozoic succession in Scandinavia includes several excellent marine source rocks notably the Alum Shale, the Dicellograptus shale and the Rastrites Shale that have been targets for shale gas exploration since 2008. We here report on samples of these source rocks from cored shallow scientific wells in southern Sweden. The samples contain both free and sorbed hydrocarbon gases with concentrations significantly above the background gas level. The gases consist of a mixture of thermogenic and bacterially derived gas. The latter likely derives from both carbonate reduction and methyl fermentation processes. The presence of both thermogenic and biogenic gas in the Lower Palaeozoic shales is in agreement with results from past and present exploration activities; thermogenic gas is a target in deeply buried, gas-mature shales in southernmost Sweden, Denmark and northern Poland, whereas biogenic gas is a target in shallow, immature-marginally mature shales in south central Sweden. We here document that biogenic gas signatures are present also in gas-mature shallow buried shales in Skåne in southernmost Sweden.


Author(s):  
Sara LIFSHITS

ABSTRACT Hydrocarbon migration mechanism into a reservoir is one of the most controversial in oil and gas geology. The research aimed to study the effect of supercritical carbon dioxide (СО2) on the permeability of sedimentary rocks (carbonates, argillite, oil shale), which was assessed by the yield of chloroform extracts and gas permeability (carbonate, argillite) before and after the treatment of rocks with supercritical СО2. An increase in the permeability of dense potentially oil-source rocks has been noted, which is explained by the dissolution of carbonates to bicarbonates due to the high chemical activity of supercritical СО2 and water dissolved in it. Similarly, in geological processes, the introduction of deep supercritical fluid into sedimentary rocks can increase the permeability and, possibly, the porosity of rocks, which will facilitate the primary migration of hydrocarbons and improve the reservoir properties of the rocks. The considered mechanism of hydrocarbon migration in the flow of deep supercritical fluid makes it possible to revise the time and duration of the formation of gas–oil deposits decreasingly, as well as to explain features in the formation of various sources of hydrocarbons and observed inflow of oil into operating and exhausted wells.


2012 ◽  
Vol 616-618 ◽  
pp. 174-184
Author(s):  
Yong He Sun ◽  
Lin Kang ◽  
Feng Xiang Yang ◽  
Xue Song Li

In order to reveal in middle fault depression belt of Hailer-Tamtsag Basin buried hill oil and gas migration and accumulation characteristics, we summarize controlling effect of fault on oil and gas migration and accumulation of buried hill, which by analysing genetic mechanism of buried hills based on fault systems formation and evolution. Research shows that three types of fault system in Hailer-Tamtsag Basin: early stretched fault system(Type I), early stretched middle tensile shearing fault system(Type I-II), early stretched middle tensile shearing reverse late fault system(Type I-II-III). Type I-II and I-II-III are stretching by NW tensional stress in Nantun group ,which afford tectonic framework for syngenesis buried hill and epigenetic buried hill. Type I make buried hills complicated .It is also favorable to ancient geomorphological buried hill in the fault less affected zones. Although they formed cracks dense zone easier, Type I-II and I-II-III fault system damage the reservoir which is not conducive to " hydrocarbon-supplying window " formation; Type I fault system have less promotion on the development of the buried hill reservoir, while it is conducive to hydrocarbon accumulation as the block boundary in buried hill hydrocarbon. Fault formed source rocks two kinds for hydrocarbon mode: unidirectional and bidirectional, which formed two reservoir-forming pattern: Unidirectional transportation hydrocarbon of weathering crust or hydrocarbon of fracture damage zones and bidirectional transportation hydrocarbon of weathering crust or hydrocarbon of fracture damage zones.


2013 ◽  
Vol 734-737 ◽  
pp. 1175-1178
Author(s):  
Hong Qi Yuan ◽  
Ying Hua Yu ◽  
Fang Liu

Based on the analysis of the relationships between the conditions of structures, sedimentations, source rocks, cap rocks, faults, oil and gas migration passages and traps and hydrocarbon accumulation, the controlling factors of hydrocarbon accumulation and distribution was studied in Talaha-changjiaweizi area. It is held that the source rocks control the hydrocarbon vertical distribution, the drainage capabilities control the hydrocarbon plane distribution, fracture belts control the hydrocarbon accumulation of Talaha syncline, underwater distributary channel is a favorable accumulation environment and reservoir physical properties control the oil and water distributions. Therefore, it is concluded that source rocks, fracture belts, sedimentary microfacies and reservoir physical properties are the main controlling factors of hydrocarbon accumulation and distribution in Talaha-changjiaweizi area.


GeoArabia ◽  
2009 ◽  
Vol 14 (3) ◽  
pp. 199-228 ◽  
Author(s):  
Mohammad Faqira ◽  
Martin Rademakers ◽  
AbdulKader M. Afifi

ABSTRACT During the past decade, considerable improvements in the seismic imaging of the deeper Paleozoic section, along with data from new well penetrations, have significantly improved our understanding of the mid-Carboniferous deformational event. Because it occurred at the same time as the Hercynian Orogeny in Europe, North Africa and North America it has been commonly referred to by the same name in the Middle East. This was the main tectonic event during the late Paleozoic, which initiated or reactivated many of the N-trending block uplifts that underlie the major hydrocarbon accumulations in eastern Arabia. The nature of the Hercynian deformation away from these structural features was poorly understood due to inadequate seismic imaging and insufficient well control, along with the tectonic overprint of subsequent deformation events. Three Hercynian NE-trending arches are recognized in the Arabian Plate (1) the Levant Arch, which extended from Egypt to Turkey along the coast of the Mediterranean Sea, (2) the Al-Batin Arch, which extended from the Arabian Shield through Kuwait to Iran, and (3) the Oman-Hadhramaut Arch, which extended along the southeast coast of Oman and Yemen. These arches were initiated during the mid-Carboniferous Hercynian Orogeny, and persisted until they were covered unconformably by the Khuff Formation during the Late Permian. Two Hercynian basins separate these arches: the Nafud-Ma’aniya Basin in the north and Faydah-Jafurah Basin in the south. The pre-Hercynian Paleozoic section was extensively eroded over the arches, resulting in a major angular unconformity, but generally preserved within the basins. Our interpretation suggests that most of the Arabian Shield, except the western highlands along the Red Sea, is the exhumed part of the Al-Batin Arch. The Hercynian structural fabric of regional arches and basins continue in northern Africa, and in general appear to be oriented orthogonal to the old margin of the Gondwana continent. The Hercynian structure of arches and basins was partly obliterated by subsequent Mesozoic and Cenozoic tectonic events. In eastern Saudi Arabia, Qatar, and Kuwait, regional extension during the Triassic formed N-trending horsts and graben that cut across the NE-trending Hercynian mega-structures, which locally inverted them. Subsequent reactivation during the Cretaceous and Neogene resulted in additional growth of the N-trending structures. The Hercynian Arches had major impact on the Paleozoic hydrocarbon accumulations. The Silurian source rocks are generally preserved in the basins and eroded over the arches, which generally confined Silurian-sourced hydrocarbons either within the basins or along their flanks. Furthermore, the relict Hercynian paleo-topography generally confined the post-Hercynian continental clastics of the Unayzah Formation and equivalents to the Hercynian basins. These clastics contain the main Paleozoic oil and gas reservoirs, particularly along the basin margins where they overlie the sub-crop of the Silurian section with angular unconformity, thus juxtaposing reservoir and source rock.


Sign in / Sign up

Export Citation Format

Share Document