Improved Procedures for Collection and Interpretation of Coal-Gas Reservoir Gas Content and Natural Fracture Geometry Data

AAPG Bulletin ◽  
1993 ◽  
Vol 77 ◽  
Author(s):  
PRATT, TIMOTHY J., and JAY C. CLOSE
2015 ◽  
Author(s):  
Manhal Sirat ◽  
Mujahed Ahmed ◽  
Xing Zhang

Abstract In-situ stress state plays an important role in controlling fracture growth and containment in hydraulic fracturing managements. It is evident that the mechanical properties, existing stress regime and the natural fracture network of its reservoir rocks and the surrounding formations mainly control the geometry, size and containments of produced hydraulic fractures. Furthermore, the three principal in situ stresses' axes swap directions and magnitudes at different depths giving rise to identifying different mechanical bedrocks with corresponding stress regimes at different depths. Hence predicting the hydro-fractures can be theoretically achieved once all the above data are available. This is particularly difficult in unconventional and tight carbonate reservoirs, where heterogeneity and highly stress variation, in terms of magnitude and orientation, are expected. To optimize the field development plan (FDP) of a tight carbonate gas reservoir in Abu Dhabi, 1D Mechanical Earth Models (MEMs), involving generating the three principal in-situ stresses' profiles and mechanical property characterization with depth, have been constructed for four vertical wells. The results reveal the swap of stress magnitudes at different mechanical layers, which controls the dimension and orientation of the produced hydro-fractures. Predicted containment of the Hydro-fractures within the specific zones is likely with inevitable high uncertainty when the stress contrast between Sv, SHmax with Shmin respectively as well as Young's modulus and Poisson's Ratio variations cannot be estimated accurately. The uncertainty associated with this analysis is mainly related to the lacking of the calibration of the stress profiles of the 1D MEMs with minifrac and/or XLOT data, and both mechanical and elastic properties with rock mechanic testing results. This study investigates the uncertainty in predicting hydraulic fracture containment due to lacking such calibration, which highlights that a complete suite of data, including calibration of 1D MEMs, is crucial in hydraulic fracture treatment.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhou Yuhui ◽  
Hu Qingxiong ◽  
Liu Wentao ◽  
Wu Zhiqi ◽  
Yan Yule ◽  
...  

The Wu 2 section of the Ke017 well block is a low-resistance gas reservoir with ultralow porosity and low permeability. The comprehensive analysis of rock lithology, physical properties, sedimentary characteristics, and gas content demonstrated that the development of micropores in illite/smectite dominated clay minerals together with the resulted additional conductivity capability and complex reservoir pore structures, as well as the enrichment of self-generating conductivity minerals like zeolites and pyrite which were the formation mechanisms of low-resistance gas layers in the Wu 2 section. A low-resistance gas reservoir has poor physical property, and it is difficult to distinguish the oil layer from the dry, gas, or water layers. In this paper, based on well/mud logging data and laboratory data, by taking advantages of the “excavation effect” of neutron gas and the dual-lateral resistivity difference between different depths, we successfully established a set of low-contrast log response methods for the identification and evaluation of oil layer and formation fluids. For a gas layer, the difference between neutron porosity and acoustic (or density) porosity is smaller than 0 and the difference in dual-lateral resistivity is greater than 0. For a water layer, the neutron porosity is similar to the acoustic (or density) porosity and the dual-lateral resistivity difference will be less than 0. While for a dry layer or a layer with both gas and water, the difference in porosity as well as dual-lateral resistivity is very small. The proposed method effectively solves the technical problem of oil layer and formation fluid identification in low-resistance gas reservoirs.


Author(s):  
Zhaozhong Yang ◽  
Rui He ◽  
Xiaogang Li ◽  
Zhanling Li ◽  
Ziyuan Liu

The tight sandstone gas reservoir in southern Songliao Basin is naturally fractured and is characterized by its low porosity and permeability. Large-scale hydraulic fracturing is the most effective way to develop this tight gas reservoir. Quantitative evaluation of fracability is essential for optimizing a fracturing reservoir. In this study, as many as ten fracability-related factors, particularly mechanical brittleness, mineral brittleness, cohesion, internal friction angle, unconfined compressive strength (UCS), natural fracture, Model-I toughness, Model-II toughness, horizontal stress difference, and fracture barrier were obtained from a series of petrophysical and geomechanical experiments are analyzed. Taking these influencing factors into consideration, a modified comprehensive evaluation model is proposed based on the analytic hierarchy process (AHP). Both a transfer matrix and a fuzzy matrix were introduced into this model. The fracability evaluation of four reservoir intervals in Jinshan gas field was analyzed. Field fracturing tests were conducted to verify the efficiency and accuracy of the proposed evaluation model. Results showed that gas production is higher and more stable in the reservoir interval with better fracability. The field test data coincides with the results of the proposed evaluation model.


2021 ◽  
Vol 21 (1) ◽  
pp. 698-706
Author(s):  
Fangwen Chen ◽  
Qiang Zheng ◽  
Hongqin Zhao ◽  
Xue Ding ◽  
Yiwen Ju ◽  
...  

To evaluate the gas content characteristics of nanopores developed in a normal pressure shale gas reservoir, the Py1 well in southeast Chongqing was selected as a case study. A series of experiments was performed to analyze the total organic carbon content, porosity and gas content using core material samples of the Longmaxi Shale from the Py1 well. The results show that the adsorbed gas and free gas content in the nanopores developed in the Py1 well in the normal pressure shale gas reservoir range from 0.46–2.24 m3/t and 0.27–0.83 m3/t, with average values of 1.38 m3/t and 0.50 m3/t, respectively. The adsorbed gas is dominant in the shale gas reservoir, accounting for 53.05–88.23% of the total gas with an average value of 71.43%. The Gas Research Institute (GRI) porosity and adsorbed gas content increase with increasing total organic carbon content. The adsorbed gas and free gas contents both increase with increasing porosity value, and the rate of increase in the adsorbed gas content with porosity is larger than that of free gas. Compared with the other five shale reservoirs in America, the Lower Silurian Longmaxi Shale in the Py1 well developed nanopores but without overpressure, which is not favorable for shale gas enrichment.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Xiaofei Shang ◽  
Huawei Zhao ◽  
Shengxiang Long ◽  
Taizhong Duan

Shale gas reservoir evaluation and production optimization both require geological models. However, currently, shale gas modeling remains relatively conventional and does not reflect the unique characteristics of shale gas reservoirs. Based on a case study of the Fuling shale gas reservoir in China, an integrated geological modeling workflow for shale gas reservoirs is proposed to facilitate its popularization and application and well improved quality and comparability. This workflow involves four types of models: a structure-stratigraphic model, reservoir (matrix) parameter model, natural fracture (NF) model, and hydraulic fracture (HF) model. The modeling strategies used for the four types of models vary due to the uniqueness of shale gas reservoirs. A horizontal-well lithofacies sublayer calibration-based method is employed to build the structure-stratigraphic model. The key to building the reservoir parameter model lies in the joint characterization of shale gas “sweet spots.” The NF models are built at various scales using various methods. Based on the NF models, the HF models are built by extended simulation and microseismic inversion. In the entire workflow, various types of models are built in a certain sequence and mutually constrain one another. In addition, the workflow contains and effectively integrates multisource data. Moreover, the workflow involves multiple model integration processes, which is the key to model quality. The selection and optimization of modeling methods, the innovation and development of modeling algorithms, and the evaluation techniques for model uncertainty are areas where breakthroughs may be possible in the geological modeling of shale gas reservoirs. The workflow allows the complex process of geological modeling of shale gas reservoirs to be more systematic. It is of great significance for a dynamic analysis of reservoir development, from individual wells to the entire gas field, and for optimizing both development schemes and production systems.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 76
Author(s):  
Basirat ◽  
Goshtasbi ◽  
Ahmadi

Hydraulic fracturing (HF) treatment is performed to enhance the productivity in the fractured reservoirs. During this process, the interaction between HF and natural fracture (NF) plays a critical role by making it possible to predict fracture geometry and reservoir production. In this paper, interaction modes between HF and NF are simulated using the discrete element method (DEM) and effective parameters on the interaction mechanisms are investigated. The numerical results also are compared with different analytical methods and experimental results. The results showed that HF generally tends to cross the NF at an angle of more than 45° and a moderate differential stress (greater than 5 MPa), and the opening mode is dominated at an angle of fewer than 45°. Two effects of changing in the interaction mode and NF opening were also found by changing the strength parameters of NF. Interaction mode was changed by increasing the friction coefficient, while by increasing the cohesion of NF it was less opened under a constant injection pressure.


2014 ◽  
Vol 953-954 ◽  
pp. 1205-1209
Author(s):  
De Zhu Cheng ◽  
Ai Ling Du ◽  
Shan Chao Jiang ◽  
Ai Qin Du

Many factors can influence coal gas desorption. In this paper, the impact of coal particle size on coal gas desorption under the effect of microwave radiation was mainly studied. Infrared (IR) spectroscopy and optical fiber sensor were used to on-line detect and the qualitative and quantitative analysis of the desorbed gas. The analysis results of the infrared spectrogram showed that under the effect of electromagnetic radiation (2450Hz, 1.5μT), different particle sizes of coal sample could desorb gas which contained carbon dioxide, carbon monoxide and methane. The comparison of gas content detected by optical fiber sensor indicated that coal particle sizes had a significant influence on coal gas desorption. When coal particle was between 100 and 200 meshes, the gas content reached up to 27.58 m3/t.


Sign in / Sign up

Export Citation Format

Share Document