Properties of Aging Pentachlorophenol-Treated Douglas-Fir Crossarms

2020 ◽  
Vol 70 (3) ◽  
pp. 364-369
Author(s):  
Christoph Schauwecker ◽  
Milo Clauson ◽  
Matthew J. Konkler ◽  
Arijit Sinha ◽  
Jeffrey J. Morrell

Abstract Wooden crossarms play a major role in supporting electric distribution lines in North America, but relatively few data exist on their condition as they age. The residual capacity of Douglas-fir crossarms in service in western Oregon for 45 to 60 years was investigated. Arms were sampled for residual preservative retention, the presence of visible decay fungi, and residual flexural properties; these results were then compared with three nondestructive tools. A majority of the arms tested had preservative levels well below those required for new arms, but only one decay fungus was isolated, and only five arms removed and dissected had any evidence of visible internal decay. Moduli of rupture for the arms were generally below the minimum levels required by national standards, but most still retained at least 67 percent of this value. Nondestructive evaluation tools were generally poorly correlated with flexural properties, possibly because of the heavily weathered and checked exterior condition.

Author(s):  
Marzena Niemczyk ◽  
Daniel J. Chmura ◽  
Jarosław Socha ◽  
Tomasz Wojda ◽  
Piotr Mroczek ◽  
...  

AbstractThe contribution of Douglas-fir (Df) to European forests is likely to increase as the species is a potential adaptation option to climate change. In this study, we investigated growth and survival of Df seed sources to fill a knowledge gap regarding recommendations for the future use of Df provenances in Poland. Our experimental test site represents the most continental climate among all Df trials installed in the IUFRO 1966–67 test series in Europe. At this unique single site, we evaluated the performance of 46 Df provenances from North America, and nine local landraces of unknown origin. Repeated measurements of tree diameter, height, and volume were analysed, to age 48, representing integrated responses to geographic and climatic conditions. Significant variation in survival and productivity-related traits were found, with the interior Df provenances performing best, in contrast to previous European reports. The higher survivability and volume of the interior provenances resulted from their superior frost resistance. The low precipitation seasonality at the location of seed origin provided an additional advantage to the trees at the test site. Geographic and climatic factors of seed origin explained most of the variation in productivity (77 and 64%, respectively). The tested landraces exhibited diverse performance, implying that naturalized local seed sources in Poland need improvement and perhaps enrichment with new genetic material from North America, while considering geography and climate. Assisted migration programs should consider the limitations imposed by both frost and drought events in guiding future Df selections for continental climates. Further field testing, early greenhouse screening and DNA testing are also recommended.


1970 ◽  
Vol 48 (9) ◽  
pp. 1541-1551 ◽  
Author(s):  
R. B. Smith ◽  
H. M. Craig ◽  
D. Chu

Fungal deterioration of second-growth Douglas-fir logs, felled each month from August 1961 to May 1962, was studied 2, 4, and 6 years after felling. Decay increased from 10% of log volumes after 2 years to 47% after 6 years. The rate of decay, particularly for the brown cubical type, was greater for autumn- and winter-felled logs than for those felled in the spring and late summer, and closely paralleled the seasonal pattern of ambrosia beetle attack.Decay rates increased with decreasing log size, increasing percentage of sapwood, and increasing height of log above ground. For the same diameter of log, base logs decayed less rapidly than second logs, possibly because of their lower proportion of sapwood in relation to heartwood.Decay expressed as a percentage of total log volume (Y) may be estimated (R2 = 0.71) with the following equation: Y = 13.2 + 10.7X1 − 3.2X2, where X1 = years elapsed and X2 = d.i.b. (diameter inside bark) top of log.Of 30 wood-decay fungi isolated, Naematoloma sp. (N. capnoides or N. fasciculare), which causes a white rot, was associated with the most decay. Fomes pinicola was mainly responsible for brown cubical sap rot, while Poria monticola and P. carbonica caused a brown cubical heart rot at the ends of logs.The significance of variations in deterioration rate and fungal associates is discussed in relation to log durability and salvability.


Author(s):  

Abstract A new distribution map is provided for Contarinia pseudotsugae Condrashoff (Diptera: Cecidomyiidae). Hosts: Douglas fir (Pseudotsuga menziesii). Information is given on the geographical distribution in Europe (Belgium, France, Germany and Netherlands) and North America (Canada, British Columbia, USA, California, Idaho, Michigan, Montana, Oregon, Pennsylvania and Washington).


Author(s):  

Abstract A new distribution map is provided for Phytophthora pseudotsugae Hamm & Hansen. Host: douglas fir (Pseudotsuga menziesii). Information is given on the geographical distribution in NORTH AMERICA, USA, OR, WA.


Author(s):  

Abstract A new distribution map is provided for Rhabdocline pseudotsugae Syd. Hosts: Douglas fir (Pseudotsuga menziesii). Information is given on the geographical distribution in EUROPE, Belgium, Britain, Czechoslovakia, Denmark, France, Germany, Irish Republic, Netherlands, Norway, Poland, Romania, Sweden, Switzerland, Yugoslavia, NORTH AMERICA, Canada (Alberta, British Columbia), USA.


Author(s):  

Abstract A new distribution map is provided for Dendroctonus pseudotsugae Hopkins Coleoptera: Scolytidae Hosts: Mainly Douglas fir (Pseudotsuga menziesii), also other Pseudotsuga spp. Information is given on the geographical distribution in NORTH AMERICA, Canada, Alberta, British Columbia, Mexico, USA, Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Texas, Utah, Washington, Wyoming.


1999 ◽  
Vol 29 (12) ◽  
pp. 1993-1996 ◽  
Author(s):  
Barbara L Gartner ◽  
Jeffrey J Morrell ◽  
Camille M Freitag ◽  
Rachel Spicer

Heartwood durability of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) was studied as a function of vertical and radial position in boles of trees with a wide range of leaf area/sapwood area ratios. Six 34-year-old trees were harvested from each of three plots established 14 years before: very dense, thinned, and thinned and fertilized. Heartwood samples from three radial positions and five heights were incubated with the decay fungus Postia placenta (Fr.) M. Larsen et Lombard. There were no significant differences in wood mass loss (decay resistance) by vertical or radial position. One could expect that trees with high leaf area/sapwood area could have the carbon to produce heartwood that is more resistant to decay than trees with lower leaf area/sapwood area. However, we found no relationship between leaf area above node 20, sapwood area there, or their ratio, and the decay resistance of outer heartwood at that node. These results suggest that, for young Douglas-fir trees, heartwood durability does not vary with position in the bole or with environments that alter the tree's balance of sapwood and leaf area. We suggest that young stands may thus be robust with respect to the effect of silvicultural regimes on heartwood durability.


Sign in / Sign up

Export Citation Format

Share Document