Heartwood decay resistance by vertical and radial position in Douglas-fir trees from a young stand

1999 ◽  
Vol 29 (12) ◽  
pp. 1993-1996 ◽  
Author(s):  
Barbara L Gartner ◽  
Jeffrey J Morrell ◽  
Camille M Freitag ◽  
Rachel Spicer

Heartwood durability of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) was studied as a function of vertical and radial position in boles of trees with a wide range of leaf area/sapwood area ratios. Six 34-year-old trees were harvested from each of three plots established 14 years before: very dense, thinned, and thinned and fertilized. Heartwood samples from three radial positions and five heights were incubated with the decay fungus Postia placenta (Fr.) M. Larsen et Lombard. There were no significant differences in wood mass loss (decay resistance) by vertical or radial position. One could expect that trees with high leaf area/sapwood area could have the carbon to produce heartwood that is more resistant to decay than trees with lower leaf area/sapwood area. However, we found no relationship between leaf area above node 20, sapwood area there, or their ratio, and the decay resistance of outer heartwood at that node. These results suggest that, for young Douglas-fir trees, heartwood durability does not vary with position in the bole or with environments that alter the tree's balance of sapwood and leaf area. We suggest that young stands may thus be robust with respect to the effect of silvicultural regimes on heartwood durability.


1996 ◽  
Vol 26 (11) ◽  
pp. 1991-2005 ◽  
Author(s):  
Douglas A. Maguire ◽  
William S. Bennett

Total amount and vertical distribution of foliage represent important aspects of forest stand structure and its influence on dry matter productivity, forest microclimate, watershed properties, and habitat structure. Variation in foliage distribution was analyzed on trees and plots in a series of even-aged Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands scheduled for management under a wide range of silvicultural regimes. Branch-level foliage mass and foliage area equations were developed from a sample of 138 branches. These equations were applied to 27 trees on which the diameter and height of all live primary branches were measured, allowing estimation of both the total amount of foliage and its vertical distribution. A β-distribution was fitted to data describing the vertical distribution of foliage on each tree, and the resulting parameter estimates were modelled as functions of tree height, diameter at breast height, crown length, and relative height in the stand. Foliage area distribution tended to be shifted downward relative to foliage mass because of the expected increase in specific leaf area with depth into the crown. Similarly, the relative foliage distribution in terms of both mass and area was shifted downward as the tree became more dominant, or as relative height in the stand increased. In contrast, foliage on trees of similar relative height was shifted upward in response to the lower stand densities imposed by precommercial thinning. On the stand level, relative vertical distribution of foliage in the canopy was more peaked than would be implied by assuming a constant leaf area/sapwood area ratio throughout the composite tree crowns. Between-stand variation in vertical foliage distribution was dictated by differences in stand top height, height to crown base, and number of trees per hectare.



IAWA Journal ◽  
2002 ◽  
Vol 23 (3) ◽  
pp. 267-285 ◽  
Author(s):  
Barbara L. Gartner

The relationships between leaf area and sapwood and inner bark quantities (widths, areas, and volumes) were studied in an attempt to understand the design criteria for sapwood quantity in eighteen 34-year-old Douglas-fir (Pseudotsuga menziesii) trees with a wide range of leaf areas, sapwood areas, and dry masses of leaf, xylem, bark, and branch. Cumulative leaf area increased from the tip to the base of the crown, and then was constant; none of the other variables had the same distribution, and so whereas there were many significant correlations, none of the factors can be related to leaf area in a simple, causal manner. Leaf area /sapwood area was extremely variable from tree to tree at a given height, and within a tree from height to height. Sapwood width was relatively constant from the tip down the stem, supporting the hypothesis that sapwood quantity in this species is related to radial gas diffusion causing either a lethal buildup of CO2 or a lethal depletion of O2 at the sap/heart boundary. However, there was no significant correlation between leaf area and either total sapwood density (dry weight/green volume) or the average latewood density in the sapwood which were used as proxies for radial diffusion rate; further research on actual radial gas diffusion in green wood may be informative.



1985 ◽  
Vol 15 (5) ◽  
pp. 985-988 ◽  
Author(s):  
Ram Oren ◽  
Walter G. Thies ◽  
Richard H. Waring

Total stand sapwood basal area, a measure of competing canopy leaf area, was reduced 30% by laminated root rot induced by Phellinusweirii (Murr.) Gilb. in a heavily infected 40-year-old coastal stand of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) compared with that of a similar uninfected stand. Annual basal area increment per unit of sapwood area, an index of tree vigor, was expected to increase in uninfected trees in the infected stand as surrounding trees died from root rot; vigor of the uninfected trees did increase by an average of 30%, offsetting the reduction in canopy leaf area. This increase, although less than might be expected in an evenly spaced thinned stand, was sufficient to maintain stand basal area growth at levels similar to those of unthinned forests. These findings indicate that increased growth by residual trees must be taken into account when the impact of disease-induced mortality on stand production is assessed.



2007 ◽  
Vol 37 (11) ◽  
pp. 2096-2105 ◽  
Author(s):  
Kelsey Sherich ◽  
Amy Pocewicz ◽  
Penelope Morgan

Trees respond to edge-to-interior microclimate differences in fragmented forests. To better understand tree physiological responses to fragmentation, we measured ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws) and Douglas-fir ( Pseudotsuga menziesii (Mirbel) Franco) leaf area, crown ratios, sapwood area, basal area (BA) growth rates, and BA growth efficiency at 23 long-established (>50 year) forest edges in northern Idaho. Trees located at forest edges had more leaf area, deeper crowns, higher BA growth rates, and more sapwood area at breast height than interior trees. Ponderosa pine had significantly higher BA growth efficiency at forest edges than interiors, but Douglas-fir BA growth efficiency did not differ, which may relate to differences in photosynthetic capacity and drought and shade tolerance. Edge orientation affected BA growth efficiency, with higher values at northeast-facing edges for both species. Edge effects were significant even after accounting for variation in stand density, which did not differ between the forest edge and interior. Although edge trees had significantly greater canopy depth on their edge-facing than forest-facing side, sapwood area was evenly distributed. We found no evidence that growing conditions at the forest edge were currently subjecting trees to stress, but higher leaf area and deeper crowns could result in lower tolerance to future drought conditions.



1994 ◽  
Vol 24 (6) ◽  
pp. 1226-1235 ◽  
Author(s):  
J. B. St.Clair

Genetic variation and covariation among traits of tree size and structure were assessed in an 18-year-old Douglas-fir (Pseudotsugamenziesii var. menziesii (Mirb.) Franco) genetic test in the Coast Range of Oregon. Considerable genetic variation was found in size, biomass partitioning, and wood density, and genetic gains may be expected from selection and breeding of desirable genotypes. Estimates of heritability for partitioning traits, including harvest index, were particularly high. Foliage efficiency (stem increment per unit leaf area) was strongly correlated with harvest index and may represent an alternative measure of partitioning to the stem. Estimates of foliage efficiency where leaf area was estimated based on stem diameter or sapwood area were unrelated to foliage efficiency where leaf area was measured directly. Strong negative genetic correlations were found between harvest index and stem size, and between wood density and stem size. Achieving simultaneous genetic gain in stem size and either harvest index or wood density would be difficult.



1993 ◽  
Vol 23 (2) ◽  
pp. 317-321 ◽  
Author(s):  
Nicholas J. Smith

Both photosynthetically active radiation penetrating the overstory canopy and overstory leaf area index were determined in forty-three 12 × 12 m plots in even-aged Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands. Stands were located on the east side of Vancouver Island, British Columbia, between 300 and 800 m on flat to south-facing slopes and were from a wide range of stem densities and stocking levels. In nine core plots total tree leaf area index was estimated using regression equations from individual-tree stem diameter and stand relative density. A single extinction coefficient did not govern the attenuation of photosynthetically active radiation with respect to leaf area index. For a given leaf area index, the extinction coefficient was smaller at low relative densities because of the presence of canopy gaps. Light attenuation models assuming a single extinction coefficient seriously underpredict stand leaf area index, especially at low stand densities. A modified Beer's Law model was used to predict light penetration, which implicitly accounted for foliage clumping.



1987 ◽  
Vol 17 (2) ◽  
pp. 174-180 ◽  
Author(s):  
M. A. Espinosa Bancalari ◽  
D. A. Perry ◽  
John D. Marshall

The relationship between foliage area and sapwood basal area was studied in three adjacent 22-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands that differed in early growth rates. Sapwood width was fairly constant for most of the stem above the stump, but the number of annual rings in the sapwood decreased gradually with height. Sapwood area also decreased with increasing height in the tree, the stands differing significantly only at breast height. The proportion of heartwood from stump to near the base of the crown was significantly higher for the stand of fastest early growth. Ratios of leaf area to sapwood area were significantly higher for that stand and varied in every stem section, the ratio lower at breast height than at the base of the live crown. At the base of the crown, the ratio of leaf area to sapwood area was 1.33 and 1.57 times greater in the fast-growing stand than in the intermediate- and slow-growing stands, respectively. Leaf area was as closely related to dbh as to sapwood area at breast height. Sapwood area at the crown base was more accurate than sapwood area at breast height for predicting leaf area in the fast stand and was equally accurate in the other two stands. Ratios of leaf area to sapwood area correlated positively with sapwood ring width. However, because sapwood ring width also correlated closely with sapwood area, it did not improve predictive equations. The results suggest that the "pipe model" theory must be modified to account for the internal structure of the "pipe" and that caution should be exercised when using published leaf area to sapwood area ratios.



1989 ◽  
Vol 19 (5) ◽  
pp. 557-565 ◽  
Author(s):  
Douglas A. Maguire ◽  
David W. Hann

Crown dimensions and sapwood area near crown base were measured on 189 Douglas-fir trees in southwestern Oregon. Sapwood areas were interpolated or extrapolated to crown base with a sapwood taper function. Various transformations of crown length and crown radius (as well as crown base stem diameter as a surrogate for crown diameter) were assessed for their ability to predict crown base sapwood area. Regression analyses indicated that no single untransformed variable was a good predictor of sapwood area at crown base, but that combinations representing conic surface area performed quite well. Given the consistently strong relationship between total leaf area and sapwood area at crown base, conic surface area should accurately reflect total leaf area and relative photosynthetic potential of the tree. Gross crown dimensions and crown base sapwood area prove complementary in a forest modeling context, owing to the structural appeal of the former and the physiological appeal of the latter.



2021 ◽  
Vol 13 (16) ◽  
pp. 3069
Author(s):  
Yadong Liu ◽  
Junhwan Kim ◽  
David H. Fleisher ◽  
Kwang Soo Kim

Seasonal forecasts of crop yield are important components for agricultural policy decisions and farmer planning. A wide range of input data are often needed to forecast crop yield in a region where sophisticated approaches such as machine learning and process-based models are used. This requires considerable effort for data preparation in addition to identifying data sources. Here, we propose a simpler approach called the Analogy Based Crop-yield (ABC) forecast scheme to make timely and accurate prediction of regional crop yield using a minimum set of inputs. In the ABC method, a growing season from a prior long-term period, e.g., 10 years, is first identified as analogous to the current season by the use of a similarity index based on the time series leaf area index (LAI) patterns. Crop yield in the given growing season is then forecasted using the weighted yield average reported in the analogous seasons for the area of interest. The ABC approach was used to predict corn and soybean yields in the Midwestern U.S. at the county level for the period of 2017–2019. The MOD15A2H, which is a satellite data product for LAI, was used to compile inputs. The mean absolute percentage error (MAPE) of crop yield forecasts was <10% for corn and soybean in each growing season when the time series of LAI from the day of year 89 to 209 was used as inputs to the ABC approach. The prediction error for the ABC approach was comparable to results from a deep neural network model that relied on soil and weather data as well as satellite data in a previous study. These results indicate that the ABC approach allowed for crop yield forecast with a lead-time of at least two months before harvest. In particular, the ABC scheme would be useful for regions where crop yield forecasts are limited by availability of reliable environmental data.



1995 ◽  
Vol 15 (9) ◽  
pp. 559-567 ◽  
Author(s):  
R. A. Vertessy ◽  
R. G. Benyon ◽  
S. K. O'Sullivan ◽  
P. R. Gribben


Sign in / Sign up

Export Citation Format

Share Document