scholarly journals Classification of drugs based on mechanism of action using machine learning techniques

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
H. L. Gururaj ◽  
Francesco Flammini ◽  
H. A. Chaya Kumari ◽  
G. R. Puneeth ◽  
B. R. Sunil Kumar

AbstractThe mechanism of action is an important aspect of drug development. It can help scientists in the process of drug discovery. This paper provides a machine learning model to predict the mechanism of action of a drug. The machine learning models used in this paper are Binary Relevance K Nearest Neighbors (Type A and Type B), Multi-label K-Nearest Neighbors and a custom neural network. These machine learning models are evaluated using the mean column-wise log loss. The custom neural network model had the best accuracy with a log loss of 0.01706. This neural network model is integrated into a web application using Flask framework. A user can upload a custom testing features dataset, which contains the gene expression and the cell viability levels. The web application will output the top classes of drugs, along with the scatter plots for each of the drug.

2021 ◽  
Vol 72 (1) ◽  
pp. 11-20
Author(s):  
Mingtao He ◽  
Wenying Li ◽  
Brian K. Via ◽  
Yaoqi Zhang

Abstract Firms engaged in producing, processing, marketing, or using lumber and lumber products always invest in futures markets to reduce the risk of lumber price volatility. The accurate prediction of real-time prices can help companies and investors hedge risks and make correct market decisions. This paper explores whether Internet browsing habits can accurately nowcast the lumber futures price. The predictors are Google Trends index data related to lumber prices. This study offers a fresh perspective on nowcasting the lumber price accurately. The novel outlook of employing both machine learning and deep learning methods shows that despite the high predictive power of both the methods, on average, deep learning models can better capture trends and provide more accurate predictions than machine learning models. The artificial neural network model is the most competitive, followed by the recurrent neural network model.


Author(s):  
Fahem Abu Bakar ◽  
◽  
Nazri Mohd Nawi ◽  
Abdulkareem A. Hezam ◽  
◽  
...  

The use of Social Network Sites (SNS) is on the rise these days, particularly among the younger generations. Users can communicate their interests, feelings, and everyday routines thanks to the availability of social media sites. Many studies show that properly utilizing user-generated content (UGC) can aid in determining people's mental health status. The use of the UGC could aid in the prediction of mental health, particularly depression, where it is a significant medical condition that impairs one's ability to work, learn, eat, sleep, and enjoy life. However, all information about a person's mood and negativism can be gathered from their SNS user profile. Therefore, this study utilizes SNS as a data source by using machine learning models to screen and identify users in categorizing users based on their mental health. The performance of three machine learning models is evaluated to classify the UGC: Decision Forest, Neural Network, and Support Vector Machine (SVM). The results show that the accuracy and recall result of the Neural Network model is the same as the Support Vector Machine (SVM) model, which is 78.27% and 0.042, but Neural Network performs better in the average precision value. This proves that the Neural Network model is the best model for making predictions to determine the level of depression by using social media posts.


2021 ◽  
pp. 1-15
Author(s):  
O. Basturk ◽  
C. Cetek

ABSTRACT In this study, prediction of aircraft Estimated Time of Arrival (ETA) is proposed using machine learning algorithms. Accurate prediction of ETA is important for management of delay and air traffic flow, runway assignment, gate assignment, collaborative decision making (CDM), coordination of ground personnel and equipment, and optimisation of arrival sequence etc. Machine learning is able to learn from experience and make predictions with weak assumptions or no assumptions at all. In the proposed approach, general flight information, trajectory data and weather data were obtained from different sources in various formats. Raw data were converted to tidy data and inserted into a relational database. To obtain the features for training the machine learning models, the data were explored, cleaned and transformed into convenient features. New features were also derived from the available data. Random forests and deep neural networks were used to train the machine learning models. Both models can predict the ETA with a mean absolute error (MAE) less than 6min after departure, and less than 3min after terminal manoeuvring area (TMA) entrance. Additionally, a web application was developed to dynamically predict the ETA using proposed models.


2021 ◽  
Vol 11 (9) ◽  
pp. 4266
Author(s):  
Md. Shahriare Satu ◽  
Koushik Chandra Howlader ◽  
Mufti Mahmud ◽  
M. Shamim Kaiser ◽  
Sheikh Mohammad Shariful Islam ◽  
...  

The first case in Bangladesh of the novel coronavirus disease (COVID-19) was reported on 8 March 2020, with the number of confirmed cases rapidly rising to over 175,000 by July 2020. In the absence of effective treatment, an essential tool of health policy is the modeling and forecasting of the progress of the pandemic. We, therefore, developed a cloud-based machine learning short-term forecasting model for Bangladesh, in which several regression-based machine learning models were applied to infected case data to estimate the number of COVID-19-infected people over the following seven days. This approach can accurately forecast the number of infected cases daily by training the prior 25 days sample data recorded on our web application. The outcomes of these efforts could aid the development and assessment of prevention strategies and identify factors that most affect the spread of COVID-19 infection in Bangladesh.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


2020 ◽  
Author(s):  
Christopher Zhou ◽  
William Grumbles ◽  
Thomas Cundari

Six machine learning models (random forest, neural network, support vector machine, k-nearest neighbors, Bayesian ridge regression, least squares linear regression) were trained on a dataset of 3d transition metal-methyl and -methane complexes to predict p<i>K<sub>a</sub></i>(C–H), a property demonstrated to be important in catalytic activity and selectivity. Results illustrate that the machine learning models are quite promising, with RMSE metrics ranging from 4.6 to 8.8 p<i>K<sub>a</sub></i> units, despite the relatively modest amount of data available to train on. Importantly, the machine learning models agreed that (a) conjugate base properties were more impactful than those of the corresponding conjugate acid, and (b) the energy of the highest occupied molecular orbital conjugate base was the most significant input feature in the prediction of p<i>K<sub>a</sub></i>(C–H). Furthermore, results from additional testing conducted using an external dataset of Sc-methyl complexes demonstrated the robustness of all models, with RMSE metrics ranging from 1.5 to 6.6 p<i>K<sub>a</sub></i> units. In all, this research demonstrates the potential of machine learning models in organometallic catalyst development.


2021 ◽  
Author(s):  
Mohammed Ayub ◽  
SanLinn Kaka

Abstract Manual first-break picking from a large volume of seismic data is extremely tedious and costly. Deployment of machine learning models makes the process fast and cost effective. However, these machine learning models require high representative and effective features for accurate automatic picking. Therefore, First- Break (FB) picking classification model that uses effective minimum number of features and promises performance efficiency is proposed. The variants of Recurrent Neural Networks (RNNs) such as Long ShortTerm Memory (LSTM) and Gated Recurrent Unit (GRU) can retain contextual information from long previous time steps. We deploy this advantage for FB picking as seismic traces are amplitude values of vibration along the time-axis. We use behavioral fluctuation of amplitude as input features for LSTM and GRU. The models are trained on noisy data and tested for generalization on original traces not seen during the training and validation process. In order to analyze the real-time suitability, the performance is benchmarked using accuracy, F1-measure and three other established metrics. We have trained two RNN models and two deep Neural Network models for FB classification using only amplitude values as features. Both LSTM and GRU have the accuracy and F1-measure with a score of 94.20%. With the same features, Convolutional Neural Network (CNN) has an accuracy of 93.58% and F1-score of 93.63%. Again, Deep Neural Network (DNN) model has scores of 92.83% and 92.59% as accuracy and F1-measure, respectively. From the pexperiment results, we see significant superior performance of LSTM and GRU to CNN and DNN when used the same features. For robustness of LSTM and GRU models, the performance is compared with DNN model that is trained using nine features derived from seismic traces and observed that the performance superiority of RNN models. Therefore, it is safe to conclude that RNN models (LSTM and GRU) are capable of classifying the FB events efficiently even by using a minimum number of features that are not computationally expensive. The novelty of our work is the capability of automatic FB classification with the RNN models that incorporate contextual behavioral information without the need for sophisticated feature extraction or engineering techniques that in turn can help in reducing the cost and fostering classification model robust and faster.


Sign in / Sign up

Export Citation Format

Share Document