Machining force comparison for surface defect hard turning and conventional hard turning of AISI 52100 steel
In this article, a recently developed method called surface defect machining (SDM) for hard turning has been adopted and termed surface defect hard turning (SDHT). The main purpose of the present study was to explore the impact of cutting parameters like cutting speed, feed, depth of cut, and tool geometry parameters such as nose radius and negative rake angle of the machining force during surface defect hard turning (SDHT) of AISI 52100 steel in dry condition with Polycrystalline cubic boron nitride (PCBN) tool; and results were compared with conventional hard turning (CHT). Experimentation is devised and executed as per Central Composite Design (CCD) of Response Surface Methodology (RSM). Results reported that an average machining force was decreased by 22% for surface defect hard turning (SDHT) compared to conventional hard turning (CHT).