scholarly journals 3D FE Modelling of Machining Forces during AISI 4140 Hard Turning

2020 ◽  
Vol 66 (7-8) ◽  
pp. 467-478 ◽  
Author(s):  
Anastasios Tzotzis ◽  
César García-Hernández ◽  
José-Luis Huertas-Talón ◽  
Panagiotis Kyratsis

Hard turning is one of the most used machining processes in industrial applications. This paper researches critical aspects that influence the machining process of AISI-4140 to develop a prediction model for the resultant machining force-induced during AISI-4140 hard turning, based on finite element (FE) modelling. A total of 27 turning simulation runs were carried out in order to investigate the relationship between three key parameters (cutting speed, feed rate, and depth of cut) and their effect on machining force components. The acquired numerical results were compared to experimental ones for verification purposes. Additionally, a mathematical model was established according to statistical methodologies such as the response surface methodology (RSM) and the analysis of variance (ANOVA). The plurality of the simulations yielded results in high conformity with the experimental values of the main machining force and its components. Specifically, the resultant cutting force agreement exceeded 90 % in many tests. Moreover, the verification of the adequacy of the statistical model led to an accuracy of 8.8 %.

Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Panagiotis Kyratsis ◽  
Anastasios Tzotzis ◽  
Angelos Markopoulos ◽  
Nikolaos Tapoglou

In this study, the development of a 3D Finite Element (FE) model for the turning of AISI-D3 with ceramic tooling is presented, with respect to four levels of cutting speed, feed, and depth of cut. The Taguchi method was employed in order to create the orthogonal array according to the variables involved in the study, reducing this way the number of the required simulation runs. Moreover, the possibility of developing a prediction model based on well-established statistical tools such as the Response Surface Methodology (RSM) and the Analysis of Variance (ANOVA) was examined, in order to further investigate the relationship between the cutting speed, feed, and depth of cut, as well as their influence on the produced force components. The findings of this study point out an increased correlation between the experimental results and the simulated ones, with a relative error below 10% for most tests. Similarly, the values derived from the developed statistical model indicate a strong agreement with the equivalent numerical values due to the verified adequacy of the statistical model.


2021 ◽  
Vol 13 (3) ◽  
pp. 205-214
Author(s):  
P. U MAMAHESWARRAO ◽  
D. RANGARAJU ◽  
K. N. S. SUMAN ◽  
B. RAVISANKAR

In this article, a recently developed method called surface defect machining (SDM) for hard turning has been adopted and termed surface defect hard turning (SDHT). The main purpose of the present study was to explore the impact of cutting parameters like cutting speed, feed, depth of cut, and tool geometry parameters such as nose radius and negative rake angle of the machining force during surface defect hard turning (SDHT) of AISI 52100 steel in dry condition with Polycrystalline cubic boron nitride (PCBN) tool; and results were compared with conventional hard turning (CHT). Experimentation is devised and executed as per Central Composite Design (CCD) of Response Surface Methodology (RSM). Results reported that an average machining force was decreased by 22% for surface defect hard turning (SDHT) compared to conventional hard turning (CHT).


2018 ◽  
Vol 14 (1) ◽  
pp. 67-76
Author(s):  
Mohanned Mohammed H. AL-Khafaji

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.17 mm/rev).


2011 ◽  
Vol 110-116 ◽  
pp. 751-757 ◽  
Author(s):  
Sanjeev Saini ◽  
Inderpreet Singh Ahuja ◽  
Vishal S. Sharma

Manufacturers around the world constantly strive for lower cost solutions in order to maintain their competitiveness on machined components and manufactured goods. Globally, part quality has been found to be at acceptable levels and it continues to improve, while the pressure for part piece cost is enormous and is constantly being influenced downward by competition and buyer strategies. In machining processes, it is necessary to attain the desired surface quality in order to produce parts providing the required functioning. The surface quality is influenced by various cutting parameters (cutting speed, feed, depth of cut) and sometimes some other parameters. The objective of this paper is to review the effect of cutting parameters on surface integrity (surface roughness and residual stress) in hard turning.


2019 ◽  
Vol 969 ◽  
pp. 732-737
Author(s):  
Sandip Mane ◽  
Sanjay Kumar

Turning of hardened alloy steel (Hard turning) is a replacement for grinding operation. The heat generation and temperature during hard turning at the cutting zone and due to the friction at tool-chip-workpiece interface are significant parameters which influence chip formation mechanism, tool wear, tool life, surface integrity and hence the machining quality. Cutting fluid performs key role in metal cutting due to its cooling and lubrication action. Flood cooling is a common method of cutting fluid application, in which large quantity of cutting fluid is applied at the cutting zone. Due to environmental, health and safety concerns, the usage of cutting fluid in abundant quantity is being restricted. Most of the researchers have varied the cutting parameters like cutting speed, feed rate and depth of cut to machine different work materials with different cutting tools and studied its effects on cutting force and cutting temperature. It is thus essential to study the combine effect of cutting and jet parameters in machining. This research article focusses on study and optimization of cutting and jet parameters on tool-chip interface temperature and cutting forces during turning hardened alloy steel AISI 4140 steel of 50 HRC using Finite Element Analysis and Taguchi’s Technique. Three levels of cutting speed, feed rate, depth of cut, jet angle and jet velocity are chosen. A suitable L27 Orthogonal array is selected based on Taguchi’s Design of Experiments (DoE) and the output quality characteristics such as tool-chip interface temperature and cutting forces are analyzed by Signal-to-Noise (S/N) ratio. Analysis of Variance is performed to determine the most contributing factor, which shows that the feed and depth of cut are the most prominent contributing parameter followed by cutting speed, jet impingement angle and jet velocity.


2012 ◽  
Vol 622-623 ◽  
pp. 390-393 ◽  
Author(s):  
R. Vinayagamoorthy ◽  
M. Anthony Xavior

The Ti-6Al-4V titanium alloy is commonly used in aerospace, automotive industries and for manufacturing of medical implants, due to its biocompatibility. The objective of this work is to investigate the performance of precision turning using conventional lathe on Ti6Al4V under dry working conditions. A range of parameters that involve the machining processes were recognized and a consensus was reached to finalize its values. The proposed work is to carry out machining under the selected levels of parameters to evaluate the cutting force and surface roughness generated as the consequence of the machining process. Cutting speed, feed rate, depth of cut and nose radiuses are considered as the machining parameters for experimentation. The variation in the surface roughness and the cutting force for the variation of each machining parameters are presented graphically.


2019 ◽  
Vol 889 ◽  
pp. 87-94
Author(s):  
Nguyen Thi Quoc Dung

Metal cutting is one of the most important machining processes in manufacturing industry. Thorough understanding of metal cutting process facilitates the optimization in selection of cutting tools and machining parameters. There are several methods used for studying phenomena in metal cutting process. Using a quick-top device is an efficient technique for investigation cutting process in which cutting action is stopped so suddenly that the “froze” specimen called the chip root honestly depicts what happened during cutting action. Design strategies of a quick-stop are accelerating cutting tool away from the workpiece or decelerating the workpiece remaining in engagement with the tool. Operation of a quick-stop device can be either mechanically or by explosive. Quick-stop devices can be utilized for various types of machining processes such as: turning, milling, drilling. This paper described the analysis, fabrication, and testing of a quick-stop device which is used for researching on chip formation in hard turning. This device has simple and safe operation which utilizes spring forces to retract the tool from workpiece during cutting. The results of performance at cutting speed of 283 m/min show that the separation distance is quite small, less than 0.2mm so that the deformations on the root chip are close to that while actual machining process. This indicates that the device has satisfied the requirements of an equipment for studying on chip formation.


2019 ◽  
Vol 23 (6 Part A) ◽  
pp. 3651-3660
Author(s):  
Jelena Baralic ◽  
Nedeljko Ducic ◽  
Andjelija Mitrovic ◽  
Pavel Kovac ◽  
Miroslav Lucic

Milling is one of the most important and most complex cutting machining processes. During the milling process, the cross-section of the chip is variable. Also, all milling operations are interrupted processes. The cutting edge of the mill tooth periodically enters and exits from the contact with the workpiece, which leads to periodic heating and cooling during the machining. This periodic change of temperature significantly affects the process of tool wear and therefore the quality of the machined surface. This paper aims at modeling and optimizing the parameters of the machining process to achieve the minimum temperature. In order to perform optimization, it was necessary to perform temperature measurements for the various parameters of the machining process. An infrared camera was used for the temperature measurement. Then, based on the measured values, the mathematical modeling of the temperature was performed depending on the cutting speed, the feed rate and the depth of cut. This model is then optimized using two different optimization techniques.


2018 ◽  
Vol 18 (1) ◽  
pp. 110-124
Author(s):  
Mohanned H AL-Khafaji

In turning operation, numerous parameters are utilized to analyze machinability. Parameters,for instant, tool wear, tool life, cutting temperature, machining force components, powerconsumption, surface roughness, and chip thickness ratio are frequently utilized. The goal ofthis work is to model the effect of cutting parameters (cutting speed, depth of cut and feedrate) on the machining force and chip thickness ratio during turning ductile aluminum 1350-O. Four fuzzy logic models were built to model the relationship between cutting parametersand the three force components of machining force and the chip thickness ration. The inputsto all fuzzy logic models are cutting speed, depth of cut and feed rate. Whereas, the outputfor first, second, third and fourth models are cutting force, passive force, feed force and chipthickness ratio, respectively. All fuzzy models showed good match to the experimental dataand the computed correlation coefficients were larger than or equal 0.9998. Those modelswere used to optimize the cutting process and give the optimum cutting parameters.


2015 ◽  
Vol 735 ◽  
pp. 65-69
Author(s):  
Amad Elddein Issa Elshwain ◽  
Mohamed Handawi ◽  
Norizah Redzuan ◽  
M.Y. Noordin ◽  
Denni Kurniawan

Dry machining has been successfully used in several machining applications with different cutting tools and workpiece materials due to its environmental friendliness. Dry hard turning has become an alternative machining process to grinding due to its ability to increase material removal rate, reduce production costs, and enhance of material properties. However, hard turning has several issues such as high temperatures at the tool-chip and tool-workpiece interfaces which are affecting negatively on the surface integrity of the machined parts. Using conventional cutting fluids can improve machining performance by reducing the temperature in the cutting area. However, conventional cutting fluids have some issues such as pollution, hazard on operator, high cost, and corrosion for machine tool and workpiece. All these issues related to applications of conventional cutting fluids have encouraged the researchers to look up for another alternative cooling technique in machining operation. Cooling gas has been explored as one of the alternative cooling techniques. The present paper studies the effect of applying nitrogen gas on surface roughness and tool life under different cutting parameters (cutting speed of 100, 135, and 170 m/min, feed of 0.16, 0.2, and 0.24 mm/rev, with constant depth of cut of 0.2 mm) for hard turning of stainless steel (hardness of 48 HRC) using coated carbide tools. Results showed that better surface finish and longer tool life were achieved by using nitrogen gas coolant condition compared to dry cutting.


Sign in / Sign up

Export Citation Format

Share Document