Effect of Non-Uniform Deformation on Low Cycle Fatigue Properties of Electron Beam Weld Joint of F82H Steel

2015 ◽  
Vol 68 (3) ◽  
pp. 607-611
Author(s):  
S. Nogami ◽  
W. Guan ◽  
M. Fukuda ◽  
H. Tanigawa ◽  
A. Hasegawa
2014 ◽  
Vol 3 ◽  
pp. 2201-2206 ◽  
Author(s):  
Seon-Jin Kim ◽  
Pil-Ho Choi ◽  
Rando Tungga Dewa ◽  
Woo-Gon Kim ◽  
Min-Hwan Kim

2018 ◽  
Vol 941 ◽  
pp. 1597-1602
Author(s):  
Ken Cho ◽  
Ryota Kobayashi ◽  
Takuma Fukuoka ◽  
Jong Yeong Oh ◽  
Hiroyuki Y. Yasuda ◽  
...  

The effect of a unique layered microstructure consisting of duplex-like region and equiaxed γ grains (γ bands) on the fatigue properties of Ti-48Al-2Cr-2Nb alloy bars fabricated by electron beam melting (EBM) at an angle (θ) of 90° between the building direction and cylinder (loading) axis was investigated focusing on the layered microstructure and test temperature. We found the room temperature (RT) fatigue strength of the alloy bars fabricated at θ = 90° is higher than that of the bars fabricated at θ = 0°. Moreover, it is comparable to that of the cast alloys with hot isostatic pressing (HIP) treatment in low-cycle fatigue life region, even without HIP treatment. The high fatigue strength of the bars at RT is attributed to the γ band, which acts as a resistance for crack propagation directed perpendicular to the γ band. On the other hand, the fatigue strength of the bars at θ = 90° is lower than that of the bars at θ = 0° in low-cycle fatigue life region at 1023 K. This is because the γ bands dose not act as a resistance for crack propagation at 1023 K. Although the bars at θ = 90° exhibits low fatigue strength in the region at 1023 K, that value is comparable to that of HIP-treated cast alloys due to the fine grain size, which is one of the features for the alloys fabricated by the EBM.


2021 ◽  
Vol 165 ◽  
pp. 112260
Author(s):  
Kaixuan Cui ◽  
Yanyun Zhao ◽  
Mengtian Liang ◽  
Bo Huang ◽  
Qunying Huang

2013 ◽  
Vol 51 (5) ◽  
pp. 325-332 ◽  
Author(s):  
Sung Hyuk Park ◽  
Seong-Gu Hong ◽  
Chong Soo Lee ◽  
Ha Sik Kim

2020 ◽  
Author(s):  
Kaiju Lu ◽  
Ankur Chauhan ◽  
Mario Walter ◽  
Aditya Srinivasan Tirunilai ◽  
Mike Schneider ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4237
Author(s):  
Takuma Tanaka ◽  
Togo Sugioka ◽  
Tatsuya Kobayashi ◽  
Ikuo Shohji ◽  
Yuya Shimada ◽  
...  

The effect of heat treatment on tensile and low cycle fatigue properties of the oxygen-free copper for electric power equipment was investigated. The heat treatment at 850 °C for 20 min, which corresponds to the vacuum brazing process, caused the grain growth and relaxation of strain by recrystallization, and thus, the residual stress in the oxygen-free copper was reduced. The tensile strength and 0.2% proof stress were decreased, and elongation was increased by the heat treatment accompanying recrystallization. The plastic strain in the heat-treated specimen was increased compared with that in the untreated specimen under the same stress amplitude condition, and thus, the low cycle fatigue life of the oxygen-free copper was degraded by the heat treatment. Striation was observed in the crack initiation area of the fractured surface in the case of the stress amplitude less than 100 MPa regardless of the presence of the heat treatment. With an increase in the stress amplitude, the river pattern and the quasicleavage fracture were mainly observed in the fracture surfaces of the untreated specimens, and they were observed with striations in the fracture surfaces of the heat-treated ones. The result of the electron backscattered diffraction (EBSD) analysis showed that the grain reference orientation deviation (GROD) map was confirmed to be effective to investigate the fatigue damage degree in the grain by low cycle fatigue. In addition, the EBSD analysis revealed that the grains were deformed, and the GROD value reached approximately 28° in the fractured areas of heat-treated specimens after the low cycle fatigue test.


Sign in / Sign up

Export Citation Format

Share Document