Baseline studies of the Clay Minerals Society source clays: specific surface area by the Brunauer Emmett Teller (BET) method

2006 ◽  
Vol 54 (1) ◽  
pp. 62-66 ◽  
Author(s):  
A. Umran Dogan ◽  
Meral Dogan ◽  
Muserref Onal ◽  
Yuksel Sarikaya ◽  
Aktham Aburub ◽  
...  
2007 ◽  
Vol 55 (5) ◽  
pp. 534-541 ◽  
Author(s):  
Meral Dogan ◽  
A. Umran Dogan ◽  
F. Irem Yesilyurt ◽  
Dogan Alaygut ◽  
Ira Buckner ◽  
...  

2010 ◽  
Vol 4 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Marija Milanovic ◽  
Ivan Stijepovic ◽  
Ljubica Nikolic

Titanate structures were synthesized in highly alkaline solution using hydrothermal procedure. As-prepared powders were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). A specific surface area of the powders was measured by BET method. Results confirmed formation of layered trititanates, already after one hour of hydrothermal synthesis. To examine the photocatalytic activity of the as-prepared layered titanates, methylene blue (MB) was employed as a target compound in response to visible light at ambient temperature. It was observed that the specific surface area, size distribution and crystallinity are important factors to get high photocatalytic activity for the decomposition of MB. .


2015 ◽  
Vol 80 (5) ◽  
pp. 717-729 ◽  
Author(s):  
Jelena Milovanovic ◽  
Ruth Stensrød ◽  
Elisabeth Myhrvold ◽  
Roman Tschentscher ◽  
Michael Stöcker ◽  
...  

In this work, different metal oxides (MO) supported on two types of zeolites: 1) natural clinoptilolite (NZ) and 2) synthetic zeolite, ZSM-5 were prepared and tested as catalysts in the fast pyrolysis of hardwood lignin. NZ was modified with the CaO and MgO by a simple two steps procedure consisting of an ion exchange reaction and a subsequent calcination at 773 K. The synthetic ZSM-5 was modified with several MO species (Ni, Cu, Ca, Mg) by a wet impregnation and calcination at 873 K. ?he prepared catalysts were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS) and measurement of specific surface area (BET method). Acid sites were characterized and quantified by pyridine (py) absorption using Fourier transform infrared spectroscopy (FTIR). The catalysts exhibit catalytic activity depanding on modification, reaction temperature and of the MO contents. The highest yield of useful phenol in bio-oil was obtained with NiO/ZSM-5 (34.8 wt.%) which exhibits the highest specific surface area and the highest concetration of Br?nsted and Lewis acid sites. The studied catalysts did not increase significantly the content of polycyclic aromatic hydrocarbons (PAHs) and heavy compounds compared to non-catalytic experiment.


2021 ◽  
Author(s):  
Sedigheh Aghayari

Abstract Here away used to reduce the porosity of the nanofibers, which is removing PVA nanofibers from PVA/PA6 nanofibers by water treatment. Measuring the porosity of the electrospun web before and after treatment by the BET method proved this. The specific surface area of the web was 60 % reduced after water treatment. Surface roughness and pore volume have reduced after water treatment. Also, I introduced BET as the method for measuring the diameters of mesopores (or lower than 100nm). I used BET to prove that the cracks can make mesopores on the nanofibers.


Jurnal Kimia ◽  
2020 ◽  
pp. 82
Author(s):  
D. A. D. N. Dewi ◽  
I N. Simpen ◽  
I W. Suarsa

A montmorillonite clay modified with semiconductor metal can act as a photocatalyst material. Montmorillonite clays were chosen because of their natural characteristics which are easily to be modified and have high specific surface area. This research aims to modify montmorillonite clay into photocatalyst material. The montmorillonite clay was intercalated using Fe2O3 to produce Fe2O3-pillared montmorillonite clay, then doped with TiO2 to form a photocatalyst material Fe2O3-PILC / TiO2. Modifications were intended to increase the specific surface area and number of active photocatalyst sites and thus increase the ability of photodegradation. The characterization carried out included characterizing the pillar formation using X-ray Diffraction (XRD), specific surface area by the BET method (Bruneau, Emmet, and Teller), a the number of surface acid-base sites by the titration method. Photocatalyst with the best character was Fe2O3-PILC / TiO2 1: 3 with specific surface area, number of acid and base sites respectively 45,947 m2/g, 20,1736 x 1023 sites/gram and 19,0044 x 1023 sites/gram. The result of photodegradation at optimum condition with visible light at pH 3 using 400 mg photocatalyst was 99.84%.   Keywords: photocatalyst, Fe2O3, montmorillonite clay, TiO2, rhodamine B


Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840016 ◽  
Author(s):  
JUN LIU ◽  
YANBIN YAO ◽  
DAMENG LIU ◽  
YIDONG CAI ◽  
JIANCHAO CAI

Fractal characterization offers a quantitative evaluation on the heterogeneity of pore structure which greatly affects gas adsorption and transportation in shales. To compare the fractal characteristics between marine and continental shales, nine samples from the Lower Silurian Longmaxi formation in the Sichuan basin and nine from the Middle Jurassic Dameigou formation in the Qaidam basin were collected. Reservoir properties and fractal dimensions were characterized for all the collected samples. In this study, fractal dimensions were originated from the Frenkel–Halsey–Hill (FHH) model with N[Formula: see text] adsorption data. Compared to continental shale, marine shale has greater values of quartz content, porosity, specific surface area and total pore volume but lower level of clay minerals content, permeability, average pore diameter and methane adsorption capacity. The quartz in marine shale is mostly associated with biogenic origin, while that in continental shale is mainly due to terrigenous debris. The N[Formula: see text] adsorption–desorption isotherms exhibit that marine shale has fewer inkbottle-shaped pores but more plate-like and slit-shaped pores than continental shale. Two fractal dimensions ([Formula: see text] and [Formula: see text] were obtained at [Formula: see text] of 0–0.5 and 0.5–1. The dimension [Formula: see text] is commonly greater than [Formula: see text], suggesting that larger pores (diameter [Formula: see text][Formula: see text]nm) have more complex structures than small pores (diameter [Formula: see text][Formula: see text]nm). The fractal dimensions (both [Formula: see text] and [Formula: see text]) positively correlate to clay minerals content, specific surface area and methane adsorption capacity, but have negative relationships with porosity, permeability and average pore diameter. The fractal dimensions increase proportionally with the increasing quartz content in marine shale but have no obvious correlation with that in continental shale. The dimension [Formula: see text] is correlative to the TOC content and permeability of marine shale at a similar degree with dimension [Formula: see text], while the dimension [Formula: see text] is more sensitive to those of continental shale than dimension [Formula: see text]. Compared with dimension [Formula: see text], for two shales, dimension [Formula: see text] is better associated with the content of clay minerals but has worse correlations with the specific surface area and average pore diameter.


2020 ◽  
Vol 17 (6) ◽  
pp. 1512-1526
Author(s):  
Xiao-Guang Yang ◽  
Shao-Bin Guo

AbstractThe evolution of shale reservoirs is mainly related to two functions: mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect. Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale, and X-ray diffraction (XRD), CO2 adsorption, N2 adsorption and high-pressure mercury injection (MIP) were then used to characterize shale diagenesis and porosity. Moreover, simulations of mechanical compaction adhering to mathematical models were performed, and a shale compaction model was proposed considering clay content and kaolinite proportions. The advantage of this model is that the change in shale compressibility, which is caused by the transformation of clay minerals during thermal evolution, may be considered. The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction. Such interactions may then express the pore evolution of shale in actual conditions of formation. Accordingly, the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content, proving that other clay minerals such as illite–smectite mixed layers (I/S) and illite are conducive to the development of pores. Shales possessing a high clay mineral content have a higher porosity in shallow layers (< 3500 m) and a lower porosity in deep layers (> 3500 m). Both the amount and location of the increase in porosity differ at different geothermal gradients. High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro. The pore evolution of the marine-continental transitional shale is divided into five stages. Stage 2 possesses an Ro of 1.0%–1.6% and has high porosity along with a high specific surface area. Stage 3 has an Ro of 1.6%–2.0% and contains a higher porosity with a low specific surface area. Finally, Stage 4 has an Ro of 2.0%–2.9% with a low porosity and high specific surface area.


2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Li ◽  
Zhongbao Liu ◽  
Haikuan Nie ◽  
Xinping Liang ◽  
Qianwen Li ◽  
...  

The lacustrine shale in the Dongyuemiao Member of the Fuling area, Sichuan Basin, is widely distributed and has huge shale oil resource potential. It is one of the important replacement areas for shale oil exploration in China. To investigate the key shale oil evaluation well, Well FY10, in the Fuling area, X-ray diffraction (XRD) mineral analysis, Rock-Eval, argon ion polishing-scanning electron microscope (SEM), Mercury injection capillary pressure (MICP), and low pressure nitrogen adsorption were launched to determine the heterogeneity of the pore system in the lacustrine shale of the Dongyuemiao Member. The mineral composition exhibits a high degree of heterogeneity, and the shale can be divided into two main lithofacies: argillaceous shale and mixed shale. The porosity ranges from 2.95 to 8.43%, and the permeability ranges from 0.05 to 1.07 × 10−3 μm2. The physical properties of mixed shale are obviously better than those of argillaceous shale. Inorganic mineral pores, such as linear pores between clay minerals and calcite dissolution pores, are mainly developed, while a small amount of organic pores can be observed. The average total pore volume (Vp) is 0.038 ml/g with an average specific surface area of 5.38 m2/g. Mesopores provide the main Vp (average 61.72%), and micropores provide mostly specific surface area. TOC imposes a strong controlling effect on the development of micropores. Clay minerals are the main contributors to mesopores and macropores. The organic-inorganic interaction during the process of diagenesis and hydrocarbon generation controls the formation of shale pore systems.


Sign in / Sign up

Export Citation Format

Share Document