scholarly journals Porosity model and pore evolution of transitional shales: an example from the Southern North China Basin

2020 ◽  
Vol 17 (6) ◽  
pp. 1512-1526
Author(s):  
Xiao-Guang Yang ◽  
Shao-Bin Guo

AbstractThe evolution of shale reservoirs is mainly related to two functions: mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect. Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale, and X-ray diffraction (XRD), CO2 adsorption, N2 adsorption and high-pressure mercury injection (MIP) were then used to characterize shale diagenesis and porosity. Moreover, simulations of mechanical compaction adhering to mathematical models were performed, and a shale compaction model was proposed considering clay content and kaolinite proportions. The advantage of this model is that the change in shale compressibility, which is caused by the transformation of clay minerals during thermal evolution, may be considered. The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction. Such interactions may then express the pore evolution of shale in actual conditions of formation. Accordingly, the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content, proving that other clay minerals such as illite–smectite mixed layers (I/S) and illite are conducive to the development of pores. Shales possessing a high clay mineral content have a higher porosity in shallow layers (< 3500 m) and a lower porosity in deep layers (> 3500 m). Both the amount and location of the increase in porosity differ at different geothermal gradients. High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro. The pore evolution of the marine-continental transitional shale is divided into five stages. Stage 2 possesses an Ro of 1.0%–1.6% and has high porosity along with a high specific surface area. Stage 3 has an Ro of 1.6%–2.0% and contains a higher porosity with a low specific surface area. Finally, Stage 4 has an Ro of 2.0%–2.9% with a low porosity and high specific surface area.

2021 ◽  
Author(s):  
Peter Lehmann ◽  
Ben Leshchinsky ◽  
Surya Gupta ◽  
Ben Mirus ◽  
Samuel Bickel ◽  
...  

&lt;p&gt;Clay minerals dominate the soil colloidal fraction and often carry the largest specific surface area &amp;#8211; a property that controls various soil hydraulic and mechanical properties (SHMPs; e.g. water retention, permeability, and internal friction). Differences in microscale structure among clay mineral types in tropical and temperate regions affect the specific surface area and result in higher permeability and internal friction angle values for tropical soils with inactive kaolinite clay minerals. Presently, the soil clay size fraction used to parameterize SHMPs with pedotransfer functions (PTFs) ignores clay mineral type, leading to inconsistent parameter representation. In this study, we present new PTFs informed by clay minerals, enabling enhanced estimation of friction angle and saturated hydraulic conductivity. To capture higher conductivity and lower air entry values in tropical soils, we developed a hierarchical packing model and validated this new PTF approach using literature data from various tropical regions. We leveraged recent global maps of clay minerals to demonstrate that a strong climatic and spatial segregation of active and inactive clays enable spatially resolved consideration of clay mineral type in SHMP estimation. We applied these clay-informed PTFs to improve SHMP representation regionally with implications for a wide range of hydrological and geomechanical Earth surface processes.&lt;/p&gt;


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1004 ◽  
Author(s):  
João Nogueira ◽  
Maria António ◽  
Sergey Mikhalev ◽  
Sara Fateixa ◽  
Tito Trindade ◽  
...  

Porous carbon materials derived from biopolymers are attractive sorbents for the removal of emerging pollutants from water, due to their high specific surface area, high porosity, tunable surface chemistry, and reasonable cost. However, carrageenan biopolymers were scarcely investigated as a carbon source to prepare porous carbon materials. Herein, hydrochars (HCs) and porous activated carbons (ACs) derived from natural occurring polysaccharides with variable sulfate content (κ-, ι- and λ-carrageenan) were prepared and investigated in the uptake of ciprofloxacin, which is an antibiotic detected in water sources and that poses serious hazards to public health. The materials were prepared using hydrothermal carbonization and subsequent chemical activation with KOH to increase the available surface area. The activated carbons were markedly microporous, presenting high specific surface area, up to 2800 m2/g. Activated carbons derived from κ- and λ-carrageenan showed high adsorption capacity (422 and 459 mg/g, respectively) for ciprofloxacin and fast adsorption kinetics, reaching the sorption equilibrium in approximately 5 min. These features place the ACs investigated here among the best systems reported in the literature for the removal of ciprofloxacin from water.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


2021 ◽  
Vol 45 (12) ◽  
pp. 5712-5719
Author(s):  
Yongxiang Zhang ◽  
Peifeng Yu ◽  
Mingtao Zheng ◽  
Yong Xiao ◽  
Hang Hu ◽  
...  

Porous carbons with a high specific surface area (2314–3470 m2 g−1) are prepared via a novel KCl-assisted activation strategy for high-performance supercapacitor.


2021 ◽  
Vol 319 ◽  
pp. 111063
Author(s):  
Yury M. Volfkovich ◽  
Valentin E. Sosenkin ◽  
Alexei Y. Rychagov ◽  
Alexandr V. Melezhik ◽  
Alexei G. Tkachev ◽  
...  

2019 ◽  
Vol 43 (33) ◽  
pp. 13217-13224 ◽  
Author(s):  
Xieyi Huang ◽  
Peng Wang ◽  
Zhichao Zhang ◽  
Shaoning Zhang ◽  
Xianlong Du ◽  
...  

Thin-layer SiOx matrix anchored nickel catalysts with high specific surface area and a unique electronic/geometric structure were fabricated for efficient CO2 methanation.


Sign in / Sign up

Export Citation Format

Share Document