scholarly journals COMPARISON OF PORE FRACTAL CHARACTERISTICS BETWEEN MARINE AND CONTINENTAL SHALES

Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840016 ◽  
Author(s):  
JUN LIU ◽  
YANBIN YAO ◽  
DAMENG LIU ◽  
YIDONG CAI ◽  
JIANCHAO CAI

Fractal characterization offers a quantitative evaluation on the heterogeneity of pore structure which greatly affects gas adsorption and transportation in shales. To compare the fractal characteristics between marine and continental shales, nine samples from the Lower Silurian Longmaxi formation in the Sichuan basin and nine from the Middle Jurassic Dameigou formation in the Qaidam basin were collected. Reservoir properties and fractal dimensions were characterized for all the collected samples. In this study, fractal dimensions were originated from the Frenkel–Halsey–Hill (FHH) model with N[Formula: see text] adsorption data. Compared to continental shale, marine shale has greater values of quartz content, porosity, specific surface area and total pore volume but lower level of clay minerals content, permeability, average pore diameter and methane adsorption capacity. The quartz in marine shale is mostly associated with biogenic origin, while that in continental shale is mainly due to terrigenous debris. The N[Formula: see text] adsorption–desorption isotherms exhibit that marine shale has fewer inkbottle-shaped pores but more plate-like and slit-shaped pores than continental shale. Two fractal dimensions ([Formula: see text] and [Formula: see text] were obtained at [Formula: see text] of 0–0.5 and 0.5–1. The dimension [Formula: see text] is commonly greater than [Formula: see text], suggesting that larger pores (diameter [Formula: see text][Formula: see text]nm) have more complex structures than small pores (diameter [Formula: see text][Formula: see text]nm). The fractal dimensions (both [Formula: see text] and [Formula: see text]) positively correlate to clay minerals content, specific surface area and methane adsorption capacity, but have negative relationships with porosity, permeability and average pore diameter. The fractal dimensions increase proportionally with the increasing quartz content in marine shale but have no obvious correlation with that in continental shale. The dimension [Formula: see text] is correlative to the TOC content and permeability of marine shale at a similar degree with dimension [Formula: see text], while the dimension [Formula: see text] is more sensitive to those of continental shale than dimension [Formula: see text]. Compared with dimension [Formula: see text], for two shales, dimension [Formula: see text] is better associated with the content of clay minerals but has worse correlations with the specific surface area and average pore diameter.

2021 ◽  
Vol 21 (1) ◽  
pp. 682-692
Author(s):  
Youzhi Wang ◽  
Cui Mao

The pore structure characteristic is an important index to measure and evaluate the storage capacity and fracturing coal reservoir. The coal of Baliancheng coalfield in Hunchun Basin was selected for experiments including low temperature nitrogen adsorption method, Argon Ion milling Scanning Electron Microscopy (Ar-SEM), Nuclear Magnetic Resonance (NMR), X-ray diffraction method, quantitative mineral clay analysis method. The pore structure of coal was quantitatively characterized by means of fractal theory. Meanwhile, the influences of pores fractal dimension were discussed with experiment data. The results show that the organic pores in Baliancheng coalfield are mainly plant tissue pores, interparticle pores and gas pores, and the mineral pores are corrosion pores and clay mineral pores. There are mainly slit pore and wedge-shaped pore in curve I of Low temperature nitrogen adsorption. There are ink pores in curve II with characteristics of a large specific surface area and average pore diameter. The two peaks of NMR T2 spectrum indicate that the adsorption pores are relatively developed and their connectivity is poor. The three peaks show the seepage pores and cracks well developed, which are beneficial to improve the porosity and permeability of coal reservoir. When the pore diameter is 2–100 nm, the fractal dimensions D1 and D2 obtained by nitrogen adsorption experiment. there are positive correlations between water content and specific surface area and surface fractal dimension D1, The fractal dimension D2 was positively and negatively correlated with ash content and average pore diameters respectively. The fractal dimensions DN1 and DN2 were obtained by using the NMR in the range of 0.1 μm˜10 μm. DN1 are positively correlated with specific surface area of adsorption pores. DN2 are positively correlated volume of seepage pores. The fractal dimension DM and dissolution hole fractal dimension Dc were calculated by SEM image method, respectively controlled by clay mineral and feldspar content. There is a remarkable positive correlation between D1 and DN1 and Langmuir volume of coal, so fractal dimension can effectively quantify the adsorption capacity of coal.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Huiqun Niu ◽  
Hongying Yang ◽  
Linlin Tong

In this paper, the structures of element carbon and humic acid extracted from carbonaceous gold concentrate were characterized employing a variety of analytical methods. The extracted amounts of ECE (elemental carbon extract) and HAE (humic acid extract) were 14.84–38.50 and 11.55–28.05 mg g−1, respectively. SEM and porosity analysis indicated that ECE occurred mostly as irregular blocky particles with a mesoporous surface with the average pore diameter being 31.42 nm. The particle size of ECE was mainly ranged from 5.5 to 42 μm and the specific surface area was 20.35 m2 g−1. The physicochemical features and structure of ECE were close to activated carbon, and the crystallinity was slightly lower than graphite. The particle size distribution of HAE varied from 40 to 400 nm with the specific surface area of 42.84 m2 g−1, whereas the average pore diameter of HAE was 2.97 nm. FTIR and UV–VIS analyses indicated that HAE was a complex organic compound containing the enrichment of oxygen-containing structure. The results showed that the adsorption amounts of ECE and HAE under the acidic conditions were 470.46 and 357.60 mg g−1, respectively. In an alkaline environment, the amount of ECE was 449.02 mg g−1 and the value of HAE was 294.72 mg g−1. ECE mainly utilized the outer surface and mesoporous structure to adsorb gold, while the functional groups’ complexation or surface site adsorption was the leading approach for HAE to adsorb gold.


2002 ◽  
pp. 27-34 ◽  
Author(s):  
Erne Kis ◽  
Jonjana Ranogajec ◽  
Radmila Marinkovic-Neducin ◽  
Etelka Dimic ◽  
Tatjana Vulic

AI-pillared montmorillonite was synthesized from raw clay, mined at Sipovo Srpska Republic. Its textural properties and bleaching capacity were compared with some commercial adsorbents and filtration aid materials commonly used in domestic oil industry. The bleaching capacity of AI-pillared montmorillonite is lower than that of commercial Super Celite L748 (Johns Manville, USA) or Perfit PF-3 (Termika dd., Zrenjanin Yugoslavia), but somewhat is higher than the bleaching capacity of pure montmorillonite. The results suggest that the bleaching capacity of the investigated samples is primarily determined by average pore diameter and not by specific surface area.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2020 ◽  
Vol 1000 ◽  
pp. 293-302
Author(s):  
H. Aripin ◽  
Nundang Busaeri ◽  
Acep Irham Gufroni ◽  
Sliven Sabchevski

A ceramic membrane has been produced from a natural zeolite. A series of samples has been sintered at range temperature from room temperaure to 900°C. The influence of the sintering temperature on the specific surface area, pore diameter, and surface roughness has been investigated. It has been found that a decrease for value of the specific surface area and average pore diameter from 300°C to 900°C was attributed to a change of the crystalline structure of tridimite from partially to fully crystallized samples. The fabricated membrane has been used successfully to evaluate the separation performance during the treatment of coconut sap. The membranes have a steady state flux from 0.12 to 0.22 mL/min.cm2 at an applied pressure of 1 bar.


2021 ◽  
Vol 8 (5) ◽  
pp. 202271
Author(s):  
Shengwei Wang ◽  
Xijian Li ◽  
Haiteng Xue ◽  
Zhonghui Shen ◽  
Liuyu Chen

The migration law of shale gas has a significant influence on the seepage characteristics of shale, and the flow of the gas is closely related to the pore structure. To explore the influence of shale pore parameters on permeability in different diffusion zones, the pore structure of the shale in the Niutitang Formation in Guizhou, China, was analysed based on liquid nitrogen adsorption experiments and nuclear magnetic resonance experiments. The relationship among fractal dimension, organic carbon content (TOC) and BET-specific surface area was analysed based on the fractal dimension of shale pores calculated using the Frenkel–Halsey–Hill model. Shale permeability was calculated using the Knudsen number ( Kn ) and permeability equation, and the influence of the fractal dimension and porosity in different diffusion zones on shale permeability was analysed. Previous studies have shown that: (i) the pores of shale in the Niutitang Formation, Guizhou are mainly distributed within 1–100 nm, with a small total pore volume per unit mass, average pore diameter, large BET specific surface area and porosity; (ii) fractal dimension has a negative correlation with average pore diameter and TOC content and a quadratic relationship with BET specific surface area; and (iii) permeability has a positive correlation with Kn , porosity and fractal dimension. In the transitional diffusion zone, fractal dimension and porosity have a significant impact on permeability. In the Knudsen diffusion zone, porosity has no obvious effect on permeability. The methodologies and results presented will enable more accurate characterization of the complexity of pore structures of porous media and allow further understanding of the seepage law of shale gas.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zhixin Li ◽  
Kaidong Xu ◽  
Jiahui Peng ◽  
Jina Wang ◽  
Xianwei Ma ◽  
...  

The deterioration mechanism of recycled plaster (R-P) was studied. The large specific surface area (SSA), improper preparation temperature, increased water requirement of R-P, and microstructure of its hardened body were analyzed by particle size distribution (PSD), Blaine method, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and nitrogen adsorption porosimetry. The results indicated that the properties of R-P were deteriorated, but its strength decreases from 50% at the same manufacturing process to 30%–40% at similar specific surface area. The analysis shows that the large SSA, poor morphology, narrow PSD, and increased internal detects give rise to increase of water requirement. In addition, the deterioration properties are caused by unsuitable temperature of preparation, loose structure, and large average pore diameter in hardened R-P as well.


2018 ◽  
Vol 37 (1) ◽  
pp. 251-272 ◽  
Author(s):  
Junjian Zhang ◽  
Chongtao Wei ◽  
Gaoyuan Yan ◽  
Guanwen Lu

To better understand the structural characteristic of adsorption pores (pore diameter < 100 nm) of coal reservoirs around the coalbed methane production areas of western Yunnan and eastern Guizhou, we analyzed the structural and fractal characteristics of pore size range of 0.40–2.0 nm and 2–100 nm in middle–high rank coals ( Ro,max = 0.93–3.20%) by combining low-temperature N2/CO2 adsorption tests and surface/volume fractal theory. The results show that the coal reservoirs can be divided into three categories: type A ( Ro,max < 2.15%), type B (2.15% <  Ro,max <2.50%), and type C ( Ro,max > 2.15%). The structural parameters of pores in the range from 2 to 100 nm are influenced by the degree of coal metamorphism and the compositional parameters (e.g., ash and volatile matter). The dominant diameters of the specific surface areas are 10–50 nm, 2–50 nm, and 2–10 nm, respectively. The pores in the range from <2 nm provide the largest proportion of total specific surface area (97.22%–99.96%) of the coal reservoir, and the CO2-specific surface area and CO2-total pore volume relationships show a positive linear correlation. The metamorphic degree has a much greater control on the pores (pore diameter less than 2 nm) structural parameters than those of the pore diameter ranges from 2 to 100 nm. Dv1 and Dv2 can characterize the structure of 2–100 nm adsorption pores, and Dv1 (volume heterogeneity) has a positive correlation with the pore structural parameters such as N2-specific surface area and N2-total pore volume. This parameter can be used to characterize volume heterogeneity of 2–10 nm pores. Dv2 (surface heterogeneity) showed type A > type B > type C and was mainly affected by the metamorphism degree. Ds2 can be used to characterize the pore surface heterogeneity of micropores in the range of 0.62–1.50 nm. This parameter has a good correlation with the pore parameters (CO2-total pore volume, CO2-specific surface area, and average pore size) and is expressed as type C < type B < type A. In conclusion, the heterogeneity of the micropores is less than that of the meso- and macropores (2–100 nm). Dv1, Dv2, and Ds2 can be used as effective parameters to characterize the pore structure of adsorption pores. This result can provide a theoretical basis for studying the pore structure compatibility of coal reservoirs in the region.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 344
Author(s):  
Chengwu Dong ◽  
Changlong Yin ◽  
Tongtong Wu ◽  
Zhuyan Wu ◽  
Dong Liu ◽  
...  

Unsupported NiMo catalyst has high hydrogenation activity due to its high active site distribution. However, low specific surface area and pore distribution greatly limit the efficient utilization of the active components. The Y-zeolite nanoclusters were hydrothermally synthesized and introduced into the unsupported NiMo catalysts from a layered nickel molybdate complex oxide. The XRD, N2 adsorption-desorption, FT-IR, Py-IR, SEM, NH3-TPD, and TEM were used to characterize all catalysts. The dibenzothiophene (DBT) hydrodesulfurization (HDS) reaction was performed in a continuous high pressure microreactor. The results showed that the specific surface area, pore volume, and average pore size of the unsupported NiMo catalysts were greatly increased by the Y-zeolite nanoclusters, and a more dispersed structure was produced. Furthermore, the Lewis acid and total acid content of the unsupported NiMo catalysts were greatly improved by the Y-zeolite nanoclusters. The HDS results showed that the unsupported NiMo catalysts modified by the nanoclusters had the same high desulfurization efficiency as the unmodified catalyst, but had more proportion of direct desulfurization (DDS) products. The results offer an alternative to reducing hydrogen consumption and save cost in the production of ultra clean diesel.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2839 ◽  
Author(s):  
Renata F. Botti ◽  
Murilo D.M. Innocentini ◽  
Thais A. Faleiros ◽  
Murilo F. Mello ◽  
Danilo L. Flumignan ◽  
...  

This work investigates the catalytic activity of geopolymers produced using two different alkali components (sodium or potassium) and four treatment temperatures (110 to 700 °C) for the methyl transesterification of soybean oil. The geopolymers were prepared with metakaolin as an aluminosilicate source and alkaline activating solutions containing either sodium or potassium in the same molar oxide proportions. The potassium-based formulation displayed a higher specific surface area and lower average pore size (28.64–62.54 m²/g; 9 nm) than the sodium formulation (6.34–32.62 m²/g; 17 nm). The reduction in specific surface area (SSA) after the heat treatment was more severe for the sodium formulation due to the higher thermal shrinkage. The catalytic activity of the geopolymer powders was compared under the same reactional conditions (70–75 °C, 150% methanol excess, 4 h reaction) and same weight amounts (3% to oil). The differences in performance were attributed to the influences of sodium and potassium on the geopolymerization process and to the accessibility of the reactants to the catalytic sites. The Na-based geopolymers performed better, with FAME contents in the biodiesel phase of 85.1% and 89.9% for samples treated at 500 and 300 °C, respectively. These results are competitive in comparison with most heterogeneous base catalysts reported in the literature, considering the very mild conditions of temperature, excess methanol and catalyst amount and the short time spent in reactions.


Sign in / Sign up

Export Citation Format

Share Document