Diagenesis in ShalesEvidence from Backscattered Electron Microscopy and Electron Microprobe Analyses

Author(s):  
T. J. Primmer ◽  
H. F. Shaw
Author(s):  
H. Koike ◽  
S. Sakurai ◽  
K. Ueno ◽  
M. Watanabe

In recent years, there has been increasing demand for higher voltage SEMs, in the field of surface observation, especially that of magnetic domains, dislocations, and electron channeling patterns by backscattered electron microscopy. On the other hand, the resolution of the CTEM has now reached 1 ∼ 2Å, and several reports have recently been made on the observation of atom images, indicating that the ultimate goal of morphological observation has beem nearly achieved.


Author(s):  
R. I. Johnsson-Hegyeli ◽  
A. F. Hegyeli ◽  
D. K. Landstrom ◽  
W. C. Lane

Last year we reported on the use of reflected light interference microscopy (RLIM) for the direct color photography of the surfaces of living normal and malignant cell cultures without the use of replicas, fixatives, or stains. The surface topography of living cells was found to follow underlying cellular structures such as nuceloli, nuclear membranes, and cytoplasmic organelles, making possible the study of their three-dimensional relationships in time. The technique makes possible the direct examination of cells grown on opaque as well as transparent surfaces. The successful in situ electron microprobe analysis of the elemental composition and distribution within single tissue culture cells was also reported.This paper deals with the parallel and combined use of scanning electron microscopy (SEM) and the two previous techniques in a study of living and fixed cancer cells. All three studies can be carried out consecutively on the same experimental specimens without disturbing the cells or their structural relationships to each other and the surface on which they are grown. KB carcinoma cells were grown on glass coverslips in closed Leighto tubes as previously described. The cultures were photographed alive by means of RLIM, then fixed with a fixative modified from Sabatini, et al (1963).


1986 ◽  
Vol 123 (3) ◽  
pp. 299-306 ◽  
Author(s):  
Andrew J. Dimberline

AbstractChlorite–mica stacks in the Wenlock turbidites have been studied using backscattered electron microscopy and electron microprobe analysis, combined with thin-section work and bulk rock chemical analysis. The stacks occur in fine sandstones and silt–mud turbidites and range in length from < 30 μm to 1.5 mm. They consist of interlayered packets of Fe-rich chlorite and mica.Combined textural and chemical data suggest that many of the stacks represent altered detrital biotite micas. A four-stage alteration sequence is proposed:(1) Subaerial alteration of biotite, in the source area, to interlayered biotite–hydrobiotite/vermiculite.(2) Post-depositional collapse of vermiculite to form a mica phase under conditions of high K+/H+ in the sediment pore waters.(3) Decrease in K+/H+ ratio, possibly due to H+ build up in the fermentation zone, causing alteration of biotite layers to chlorite.(4) Kinking of the stacks and pressure solution of chlorite early in the development of cleavage.


1987 ◽  
Vol 96 ◽  
Author(s):  
M. H. Ghandehari ◽  
J. Fidler

ABSTRACTMicrostructures of Nd15−xDyxFe77B8 prepared by alloying with Dy, and by using Dy2O3 as a sinl'ken adidive, have been determined using electron microprobe and transmission electron microscopy. The results have shown a higher Dy concentration near the grain boundaries of the 2–14–1 phase for magnets doped with Dy2O 3, as compared to the Dy-alloyed magnets. A two-step post sintering heat treatment was also studied for the two systems. The resultant concentration gradient of Dy in the 2–14–1 phase of the oxide-doped magnets is explained by the reaction of Dy2O3 with the Nd-rich grain boundary phase and its slow diffusion into thg 4–14–1 phase. Increased Dy concentration near the grain boundary is more effective in improving the coercivity, as domain reversal nucleation originates at or near this region.


Author(s):  
E O Vlasov ◽  
D S Chezganov ◽  
L V Gimadeeva ◽  
A D Ushakov ◽  
Q Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document