scholarly journals Polymeric micelles for oral drug delivery: Why and how

2004 ◽  
Vol 76 (7-8) ◽  
pp. 1321-1335 ◽  
Author(s):  
M. F. Francis ◽  
Mariana Cristea ◽  
F. M. Winnik

The oral delivery of drugs is regarded as the optimal means for achieving therapeutic effects owing to increased patient compliance. Unfortunately, the oral delivery route is beset with problems such as gastrointestinal (GI) destruction of labile molecules, low levels of macromolecular absorption, etc. To reduce the impact of digestive enzymes and to ensure the absorption of bioactive agents in an unaltered form, molecules may be incorporated into microparticulate carriers. Many approaches to achieve the oral absorption of a wide variety of drugs are currently under investigation. Among the different polymer-based drug delivery systems, polymeric micelles represent a promising delivery vehicle especially intended for poorly water-soluble pharmaceutical active ingredients in order to improve their oral bioavailability. Recent findings of a dextran-based polymeric micelle study for solubilization of a highly lipophilic drug, cyclosporin A (CsA), will be discussed.

2021 ◽  
Vol 18 ◽  
Author(s):  
Yrysbaeva Aidana ◽  
Yibin Wang ◽  
Jie Li ◽  
Shuyue Chang ◽  
Ke Wang ◽  
...  

Background: Electrospinning is developing rapidly from an earlier laboratory method into an industrial process. The clinical applications are approached in various ways through electrospun medicated nanofibers. The fast-dissolving oral drug delivery system (DDS) among them is one of the most promising routes in the near future for commercial applications. Methods: Related papers are investigated, including the latest research results, on electrospun nanofiber-based fast-dissolution DDSs. Results: Several relative topics have been concluded: 1) the development of electrospinning, ranging from 1-fluid blending to multi-fluid process and potential applications in the formation of medicated nanofibers involving poorly water-soluble drugs; 2) Selection of appropriate polymer matrices and drug carriers for filament formation; 3) Types of poorly water-soluble drugs ideal for fast oral delivery; 4) The methods for evaluating fast-dissolving nanofibers; 5) The mechanisms that promote the fast dissolution of poorly water-soluble drugs by electrospun nanofibers; 6) the important issues for further development of electrospun medicated nanofibers as oral fast-dissolving drug delivery systems. Conclusions & Perspectives: The unique properties of electrospun-medicated nanofibers can be used as oral fast dissolving DDSs of poorly water-soluble drugs. However, some significant issues need to be investigated, such as scalable productions and solid dosage form conversions.


2020 ◽  
Vol 10 (2) ◽  
pp. 164-177 ◽  
Author(s):  
Md. Rizwanullah ◽  
Javed Ahmad ◽  
Saima Amin ◽  
Awanish Mishra ◽  
Mohammad Ruhal Ain ◽  
...  

Cancer chemotherapeutic administration by oral route has the potential to create “hospitalization free chemotherapy”. Such a therapeutic approach will improve patient compliance and significantly reduce the cost of treatment. In current clinical practice, chemotherapy is primarily carried out by intravenous injection or infusion and leads to various unwanted effects. Despite the presence of oral delivery challenges like poor aqueous solubility, low permeability, drug stability and substrate for multidrug efflux transporter, cancer chemotherapy delivery through oral administration has gained much attention recently due to having more patient compliance compared to the intravenous mode of administration. In order to address the multifaceted oral drug delivery challenges, a hybrid delivery system is conceptualized to merge the benefits of both polymeric and lipid-based drug carriers. Polymer-lipid hybrid systems have presented various significant benefits as an efficient carrier to facilitate oral drug delivery by surmounting the different associated obstacles. This carrier system has been found suitable to overcome the numerous oral absorption hindrances and facilitate the intravenous-to-oral switch in cancer chemotherapy. In this review, we aimed to discuss the different biopharmaceutic challenges in oral delivery of cancer chemotherapy and how this hybrid system may provide solutions to such challenges.


2014 ◽  
Vol 1060 ◽  
pp. 7-11
Author(s):  
Thisirak Woraphatphadung ◽  
Warayuth Sajomsang ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat ◽  
Praneet Opanasopit

N-arylsuccinyl chitosan was successfully synthesized by introducing hydrophobic and hydrophilic moieties into the chitosan backbone. Incorporation efficiency of the drug-loaded micelles, particle size, in vitro cytotoxicity, and in vitro drug release were investigated. Meloxicam (MX) as a model drug was loaded into the inner core of the micelles by solvent evaporation method. The critical micelle concentration (CMC) of micelles was found to be 0.0385 mg/ml. N-arylsuccinyl chitosan micelles were able to entrap hydrophobic drug (MX) and have particle sizes in the range of 342.1- 444.2 nm. The micelles could enhance solubility of MX with high incorporation efficiency (32.72%). The cytotoxicity in Caco-2 cells to be dependent on the concentration of N-arylsuccinyl chitosan with the IC50 value of 3.23 +/- 0.08 mg/ml. Therefore, N-arylsuccinyl chitosan polymeric micelle presents interest to improve solubility of hydrophobic drug for oral drug delivery.


2020 ◽  
Author(s):  
Jung Min Kim ◽  
Da Hye Kim ◽  
Hyo Jeong Park ◽  
Hyun Woo Ma ◽  
I Seul Park ◽  
...  

Abstract Infliximab (IFX), a TNF-α blocking chimeric monoclonal antibody, induces clinical response and mucosal healing in patients with inflammatory bowel disease (IBD). However, systemic administration of this agent causes unwanted side effects. Oral delivery of antibody therapeutics might be an effective treatment strategy for IBD compared to intravenous administration. We developed a colon-specific drug delivery system for the oral administration of IFX using ternary nanocomposite carriers. Nanocomposite carriers consisting of liposomes, aminoclay-coated liposomes (AC-L), Eudragit S100 AC-L (EAC-L) or those carrying IFX (IFX-L, AC-IFX-L, and EAC-IFX-L) were orally administered to mice with dextran sulfate sodium-induced colitis. We evaluated the effects of nanocomposite carriers on lymphocytes and monocytes in peripheral blood mononuclear cells (PBMC) of IBD patients. We studied the therapeutic effects of the nanocomposites themselves and nanocomposites with IFX at target sites in vivo and in vitro . All three carriers had a high encapsulation efficiency, narrow size distribution, and minimal systemic exposure. There was a higher interaction between nanocomposite carriers and monocytes compared to lymphocytes in the PBMC of IBD patients. Orally administered nanocomposite carriers targeted to inflamed colitis minimized systemic exposure. All IFX delivery formulations with nanocomposite carriers had a significantly less colitis-induced body weight loss, colon shortening and histomorphological score, compared to the DSS-treated group. AC-IFX-L and EAC-IFX-L groups showed significantly higher improvement of the disease activity index, compared to the DSS-treated group. In addition, AC-IFX-L and EAC-IFX-L alleviated pro-inflammatory cytokine expressions ( Tnfa , Il1b , and Il17 ). We present orally administered antibody delivery systems which improved efficacy in murine colitis while reducing systemic exposure. These oral delivery systems suggest a promising therapeutic approach for treating IBD.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Wei Xu ◽  
Peixue Ling ◽  
Tianmin Zhang

Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs) can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1) protection of the loaded drug from the harsh environment of the GI tract, (2) release of the drug in a controlled manner at target sites, (3) prolongation of the residence time in the gut by mucoadhesion, and (4) inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.


Author(s):  
Leena Jacob ◽  
Abhilash Tv ◽  
Shajan Abraham

Objective: The study was carried out with an objective to achieve a potential sustained release oral drug delivery system of an antihypertensive drug, Perindopril which is a ACE inhibitor having half life of 2 hours. Perindopril is water soluble drug, so we can control or delay the release rate of drug by using release retarding polymers. This may also decrease the toxic side effects by preventing the high initial concentration in the blood.Method: Microcapsules were prepared by solvent evaporation technique using Eudragit L100 and Ethyl cellulose as a retarding agent to control the release rate and magnesium stearate as an inert dispersing carrier to decrease the interfacial tension between lipophilic and hydrophilic phase. Results: Prepared microcapsules were evaluated for the particle size, percentage yield, drug entrapment efficiency, flow property and in vitro drug release for 12 h. Results indicated that the percentage yield, mean particle size, drug entrapment efficiency and the micrometric properties of the microcapsules was influenced by various drug: polymer ratio. The release rate of microcapsules could be controlled as desired by adjusting the combination ratio of dispersing agents to retarding agents.Conclusion:Perindopril microcapsules can be successfully designed to develop sustained drug delivery, that reduces the dosing frequency and their by one can increase the patient compliance.


Author(s):  
Pooja Mathur ◽  
Chandra Kant Mathur ◽  
Kanchan Mathur

The subcutaneous injection of insulin for the treatment of diabetes mellitus can lead to patient non-compliance, discomfort, pain and local infection is a chronic metabolic health disease affecting the homeostasis of blood sugar levels in human beings. Oral route of drug delivery system has been the most widely accepted means of drug administration other than invasive drug delivery systems. For the development of an oral insulin delivery system, we have to focus on overcoming the various gastro-intestinal barriers for insulin uptake from the gastrointestinal tract. To overcome these barriers various types of formulations such as insulin conjugates, micro/nanoparticles, liposomes, hydrogel, capsule, and tablets are designed to deliver insulin orally. Various potential ways to administer insulin orally has been explored over years but a fluctuating level of insulin release have been recorded. A number of advancement has taken place in the recent years for understanding the needs of improved oral delivery systems of insulin. This review article concentrates on the challenges for oral drug delivery of insulin as well as various carriers used for the oral drug delivery of insulin and also provides the relevant information about the clinical tested formulations of oral insulin and its patents.


2020 ◽  
Vol 8 (13) ◽  
pp. 2636-2649
Author(s):  
Yuli Bai ◽  
Rui Zhou ◽  
Lei Wu ◽  
Yaxian Zheng ◽  
Xi Liu ◽  
...  

Endowing the NPs with specific surface features of dendritic oligopeptides holds great potential for the oral delivery of peptide/protein drugs.


2010 ◽  
Vol 8 (1) ◽  
pp. 225-238 ◽  
Author(s):  
Hong Yuan ◽  
Lin-Juan Lu ◽  
Yong-Zhong Du ◽  
Fu-Qiang Hu

2018 ◽  
Vol 10 (5) ◽  
pp. 125 ◽  
Author(s):  
Ali Nasr ◽  
Mona Qushawy ◽  
Shady Swidan

Objective: In the present investigation efforts were considered to optimize the different conditions for the preparation of spray dried lactose based proniosomes. The aim of this research was to investigate the feasibility of proniosomes as stable precursors for the development of niosomes as oral drug delivery system for poorly water-soluble drugs.Methods: A total of twenty-eight plain proniosomal formulae were prepared with various surfactant-cholesterol loading ratios in each formula using spray dried lactose as a carrier. Span 20, 40, 60 and 80 were used in various molar ratios with cholesterol. Different evaluation techniques were performed to study the performance of the prepared proniosomes. The micromeritic properties of the prepared proniosomes were analyzed. The reconstituted niosomes were further evaluated for morphological characterization using transmission electron microscope (TEM), particle size analysis, zeta potential, and polydispersity index (PDI). Finally, selected proniosomal formulae were tested for stability study.Results: The proniosomal formulae prepared using span 40 and span 60 exhibited excellent flowability while those prepared with span 20 and span 80 showed poor flow properties. TEM photographs revealed that the vesicles were discrete, spherical without aggregation. The mean vesicle size of reconstituted niosomes was found to be in the range between (252.9±0.43–624.3±0.23 nm) with perfect PDI values (0.387±0.05–0.835±0.03). The negative values of zeta potential indicated that all prepared formulae were stabilized by electrostatic repulsion forces. Stability studies confirmed that proniosomes give a more stable system that could overcome the problems of standard niosomes. Formulae with the smallest particle size, higher surface charge values and best flow properties were selected to be loaded with poorly soluble drugs for further study.Conclusion: The obtained results offered evidence that spray-dried lactose based proniosomes are promising stable drug delivery carriers and ready to incorporate various poorly water-soluble drugs in order to improve their limited oral bioavailability.


Sign in / Sign up

Export Citation Format

Share Document