De novo design approach based on nanorecognition toward development of functional molecules/materials and nanosensors/nanodevices

2007 ◽  
Vol 79 (6) ◽  
pp. 1057-1075 ◽  
Author(s):  
N. Jiten Singh ◽  
Han Myoung Lee ◽  
Seung Bum Suh ◽  
Kwang S. Kim

For the design of functional molecules and nanodevices, it is very useful to utilize nanorecognition (which is governed mainly by interaction forces such as hydrogen bonding, ionic interaction, π-H/π-π interactions, and metallic interactions) and nanodynamics (involving capture, transport, and release of electrons, photons, or protons). The manifestation of these interaction forces has led us to the design and realization of diverse ionophores/receptors, organic nanotubes, nanowires, molecular mechanical devices, molecular switches, enzyme mimetics, protein folding/unfolding, etc. In this review, we begin with a brief discussion of the interaction forces, followed by some of our representative applications. We discuss ionophores with chemo-sensing capability for biologically important cations and anions and explain how the understanding of hydrogen bonding and π-interactions has led to the design of self-assembled nanotubes from calix[4]hydroquinone (CHQ). The binding study of neutral and cationic transition metals with the redox system of hydroquinone (HQ) and quinone (Q) predicts what kind of nanostructures would form. Finally, we look into the conformational changes between stacked and edge-to-face conformers in π-benzoquinone-benzene complexes controlled by alternating electrochemical potential. The resulting flapping motion illustrates a promising pathway toward the design of mobile nanomechanical devices.

RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3470-3475
Author(s):  
Ye Meng ◽  
Weiwei Zhao ◽  
Jun Zheng ◽  
Daofa Jiang ◽  
Jie Gao ◽  
...  

Two TMeQ[6]-based multi-dimensional supramolecular frameworks were formed driven by weak interaction forces in the system (hydrogen bonding, C–H... π interactions, ion–dipole interactions, and dipole–dipole interactions).


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2074
Author(s):  
Sara Tabandeh ◽  
Cristina Elisabeth Lemus ◽  
Lorraine Leon

Electrostatic interactions, and specifically π-interactions play a significant role in the liquid-liquid phase separation of proteins and formation of membraneless organelles/or biological condensates. Sequence patterning of peptides allows creating protein-like structures and controlling the chemistry and interactions of the mimetic molecules. A library of oppositely charged polypeptides was designed and synthesized to investigate the role of π-interactions on phase separation and secondary structures of polyelectrolyte complexes. Phenylalanine was chosen as the π-containing residue and was used together with lysine or glutamic acid in the design of positively or negatively charged sequences. The effect of charge density and also the substitution of fluorine on the phenylalanine ring, known to disrupt π-interactions, were investigated. Characterization analysis using MALDI-TOF mass spectroscopy, H NMR, and circular dichroism (CD) confirmed the molecular structure and chiral pattern of peptide sequences. Despite an alternating sequence of chirality previously shown to promote liquid-liquid phase separation, complexes appeared as solid precipitates, suggesting strong interactions between the sequence pairs. The secondary structures of sequence pairs showed the formation of hydrogen-bonded structures with a β-sheet signal in FTIR spectroscopy. The presence of fluorine decreased hydrogen bonding due to its inhibitory effect on π-interactions. π-interactions resulted in enhanced stability of complexes against salt, and higher critical salt concentrations for complexes with more π-containing amino acids. Furthermore, UV-vis spectroscopy showed that sequences containing π-interactions and increased charge density encapsulated a small charged molecule with π-bonds with high efficiency. These findings highlight the interplay between ionic, hydrophobic, hydrogen bonding, and π-interactions in polyelectrolyte complex formation and enhance our understanding of phase separation phenomena in protein-like structures.


2011 ◽  
Vol 975 (1-3) ◽  
pp. 106-110 ◽  
Author(s):  
Carolina Estarellas ◽  
Antonio Frontera ◽  
David Quiñonero ◽  
Pere M. Deyà

2008 ◽  
Vol 73 (1) ◽  
pp. 41-53
Author(s):  
Aleksandra Rakic ◽  
Petar Mitrasinovic

The present study characterizes using molecular dynamics simulations the behavior of the GAA (1186-1188) hairpin triloops with their closing c-g base pairs in large ribonucleoligand complexes (PDB IDs: 1njn, 1nwy, 1jzx). The relative energies of the motifs in the complexes with respect to that in the reference structure (unbound form of rRNA; PDB ID: 1njp) display the trends that agree with those of the conformational parameters reported in a previous study1 utilizing the de novo pseudotorsional (?,?) approach. The RNA regions around the actual RNA-ligand contacts, which experience the most substantial conformational changes upon formation of the complexes were identified. The thermodynamic parameters, based on a two-state conformational model of RNA sequences containing 15, 21 and 27 nucleotides in the immediate vicinity of the particular binding sites, were evaluated. From a more structural standpoint, the strain of a triloop, being far from the specific contacts and interacting primarily with other parts of the ribosome, was established as a structural feature which conforms to the trend of the average values of the thermodynamic variables corresponding to the three motifs defined by the 15-, 21- and 27-nucleotide sequences. From a more functional standpoint, RNA-ligand recognition is suggested to be presumably dictated by the types of ligands in the complexes.


2012 ◽  
Vol 68 (8) ◽  
pp. m203-m205 ◽  
Author(s):  
Mario Tenne ◽  
Yvonne Unger ◽  
Thomas Strassner

The title platinum(II) complex, [Pt(C10H8BrN2)(C5H7O2)], has a bidentate cyclometallated phenylimidazolylidene ligand and an acetylacetonate spectator ligand, which form a distorted square-planar coordination environment around the PtIIcentre. In the solid state, the molecules are oriented in a parallel fashion by intermolecular hydrogen bonding and π–π and C—H...π interactions, while close Pt...Pt contacts are not observed. The structure is only the second example for this new class of compounds.


2007 ◽  
Vol 119 (46) ◽  
pp. 8938-8940 ◽  
Author(s):  
Mark Mascal ◽  
Ilya Yakovlev ◽  
Edward B. Nikitin ◽  
James C. Fettinger

CrystEngComm ◽  
2016 ◽  
Vol 18 (1) ◽  
pp. 62-67
Author(s):  
Yoona Jang ◽  
Seo Yeon Yoo ◽  
Hye Rin Gu ◽  
Yu Jin Lee ◽  
Young Shin Cha ◽  
...  

6-Chloro-9-propyl-purin-2-amine (pr-GCl) forms two-dimensional hydrogen-bonded networks which in turn stack via π–π interactions, leading to the formation of bilayers that can accommodate organic guest molecules.


2021 ◽  
Vol 22 (23) ◽  
pp. 12906
Author(s):  
Masaya Mitsumoto ◽  
Kanna Sugaya ◽  
Kazuki Kazama ◽  
Ryosuke Nakano ◽  
Takahiro Kosugi ◽  
...  

G-protein coupled receptors (GPCRs) are known for their low stability and large conformational changes upon transitions between multiple states. A widely used method for stabilizing these receptors is to make chimeric receptors by fusing soluble proteins (i.e., fusion partner proteins) into the intracellular loop 3 (ICL3) connecting the transmembrane helices 5 and 6 (TM5 and TM6). However, this fusion approach requires experimental trial and error to identify appropriate soluble proteins, residue positions, and linker lengths for making the fusion. Moreover, this approach has not provided state-targeting stabilization of GPCRs. Here, to rationally stabilize a class A GPCR, adenosine A2A receptor (A2AR) in a target state, we carried out the custom-made de novo design of α-helical fusion partner proteins, which can fix the conformation of TM5 and TM6 to that in an inactive state of A2AR through straight helical connections without any kinks or intervening loops. The chimeric A2AR fused with one of the designs (FiX1) exhibited increased thermal stability. Moreover, compared with the wild type, the binding affinity of the chimera against the agonist NECA was significantly decreased, whereas that against the inverse agonist ZM241385 was similar, indicating that the inactive state was selectively stabilized. Our strategy contributes to the rational state-targeting stabilization of GPCRs.


Sign in / Sign up

Export Citation Format

Share Document