Therapeutic role of nitric oxide donors in the treatment of cardiovascular disease

1994 ◽  
Vol 19 (7) ◽  
pp. 665 ◽  
Author(s):  
A.M. Lefer ◽  
D.J. Lefer

2020 ◽  
Vol 22 (1) ◽  
pp. 72-79
Author(s):  
Alexandra Lee ◽  
◽  
Warwick Butt ◽  
◽  
◽  
...  

Inhaled nitric oxide has been used for 30 years to improve oxygenation and decrease pulmonary vascular resistance. In the past 15 years, there has been increased understanding of the role of endogenous nitric oxide on cell surface receptors, mitochondria, and intracellular processes involving calcium and superoxide radicals. This has led to several animal and human experiments revealing a potential role for administered nitric oxide or nitric oxide donors in patients with systemic inflammatory response syndrome or ischaemia–reperfusion injury, and in patients for whom exposure of blood to artificial surfaces has occurred.



PEDIATRICS ◽  
1996 ◽  
Vol 97 (3) ◽  
pp. 438-439
Author(s):  
STEVEN H. ABMAN ◽  
JOHN P. KINSELLA

Dr Davidson misinterprets our recent commentary on the pathophysiology of persistent pulmonary hypertension of the newborn (PPHN) and potential therapeutic role of inhaled nitric oxide (I-NO) as suggesting the lack of a need for multiple studies that investigate different questions regarding its efficacy. In contrast, we clearly state that "multicenter studies play vital roles in improving clinical care, and the absence of such studies may lead to the inappropriate use of ineffective or harmful therapies."



2007 ◽  
Vol 35 (5) ◽  
pp. 1133-1137 ◽  
Author(s):  
S. Murphy ◽  
C.L. Gibson

Cerebral ischaemia results in the activation of three isoforms of NOS (nitric oxide synthase) that contribute to the development of and recovery from stroke pathology. This review discusses, in particular, the role of the transcriptionally activated NOS-2 (inducible NOS) isoform and summarizes the outcomes of experimental stroke studies with regard to the therapeutic utility of nitric oxide donors and NOS inhibitors.



2000 ◽  
Vol 92 (3) ◽  
pp. 813-820 ◽  
Author(s):  
Hiroyuki Kinoshita ◽  
Toshizo Ishikawa ◽  
Yoshio Hatano

Background A class Ib antiarrhythmic drug, mexiletine, augments relaxations produced by adenosine triphosphate (ATP) sensitive K+ channel openers in isolated rat aortas, suggesting that it produces changes in the vasodilation mediated by ATP-sensitive K+ channels. Nitric oxide can induce its vasodilator effect via K+ channels, including ATP-sensitive K+ channels, in smooth muscle cells. Effects of mexiletine on arterial relaxations to nitric oxide donors, have not been studied. Therefore, the current study in isolated rat aortas was designed to (1) evaluate whether mexiletine augments relaxation in response to nitric oxide donors, including sodium nitroprusside, and (2) determine the role of K+ channels in mediating effects of mexiletine on such nitric oxide-mediated relaxation. Methods Rings of rat aortas without endothelia were suspended for isometric force recording. Concentration-response curves of sodium nitroprusside (10(-10) to 10(-5) M) and 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC-7; 10(-9) to 10(-5) M) were obtained in the absence and in the presence of mexiletine, in combination with a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo [4,3,-a]quinoxaline-1-one (ODQ), or inhibitors for ATP-sensitive K+ channels (glibenclamide), inward rectifier K+ channels (BaCl2), delayed rectifier K+ channels (4-aminopyridine), large conductance Ca2+-dependent K+ channels (iberiotoxin), or small conductance Ca2+-dependent K+ channels (apamin). Results Mexiletine (10(-5) or 3 x 10(-5) M) augmented relaxations to sodium nitroprusside and NOC-7. In arteries treated with glibenclamide (10(-5) M), mexiletine (3 x 10(-5) M) did not affect relaxations to nitric oxide donors, whereas mexiletine augmented relaxations to sodium nitroprusside despite the presence of BaCl2 (10(-5) M), 4-aminopyridine (10(-3) M), iberiotoxin (5 x 10(-8) M) and apamin (5 x 10(-8) M). Relaxations to sodium nitroprusside were abolished by ODQ (5 x 10(-6) M), whereas these relaxations were augmented by mexiletine (3 x 10(-5) M) in arteries treated with ODQ (5 x 10(-6) M). Conclusions These results suggest that ATP-sensitive K+ channels in vascular smooth muscle, contribute to the augmented vasodilator effect of a nitric oxide donor, sodium nitroprusside induced by mexiletine, and that the vasodilator effect is produced, at least in part, via the guanylate cyclase-independent mechanism.



1998 ◽  
Vol 341 (2-3) ◽  
pp. 225-233 ◽  
Author(s):  
Karen Stuart-Smith ◽  
David O. Warner ◽  
Keith A. Jones


2005 ◽  
Vol 37 (Supplement) ◽  
pp. S454
Author(s):  
Anuradha Dayal ◽  
Dalynn T. Badenhop ◽  
Theodore D. Fraker ◽  
Brad Chapman ◽  
Sandra Gardam ◽  
...  


2018 ◽  
Vol 07 (02) ◽  
Author(s):  
Moretti HD ◽  
Grant WB ◽  
Berry BD ◽  
Colucci VJ


Sign in / Sign up

Export Citation Format

Share Document