Computer-aided drug design: the role of quantitative structure-property, structure-activity and structure-metabolism relationships (QSPR, QSAR, QSMR)

2002 ◽  
Vol 27 (6) ◽  
pp. 577 ◽  
Author(s):  
P. Buchwald ◽  
N. Bodor
2017 ◽  
Vol 6 (1) ◽  
pp. 1433
Author(s):  
Vijay Kumar Sehgal ◽  
Supratik Das ◽  
Anand Vardhan

Designing of drugs and their development are a time and resource consuming process. There is an increasing effort to introduce the role of computational approach to chemical and biological space in order to organise the design and development of drugs and their optimisation. The role of Computer Aided Drug Designing (CADD) are nowadays expressed in Nanotechnology, Molecular biology, Biochemistry etc. It is a diverse discipline where various forms of applied and basic researches are interlinked with each other. Computer aided or in Silico drug designing is required to detect hits and leads. Optimise/ alter the absorption, distribution, metabolism, excretion and toxicity profile and prevent safety issues. Some commonly used computational approaches include ligand-based drug design, structure-based drug design, and quantitative structure-activity and quantitative structure-property relationships. In today's world, due to an avid interest of regulatory agencies and, even pharmaceutical companies in advancing drug discovery and development process by computational means, it is expected that its power will grow as technology continues to evolve. The main purpose of this review article is to give a brief glimpse about the role Computer Aided Drug Design has played in modern medical science and the scope it carries in the near future, in the service of designing newer drugs along with lesser expenditure of time and money.


2020 ◽  
Vol 21 ◽  
Author(s):  
Paranjeet Kaur ◽  
Gopal Khatik

Background: In this fast-growing era, high throughput data is now being so easily accessed by getting transformed into datasets which store the information. Such information is valuable to optimize the hypothesis and drug design via computer-aided drug design (CADD). Nowadays, we can explore the role of CADD in various disciplines like Nanotechnology, Biochemistry, Medical Sciences, Molecular Biology, etc. Methods: We searched the valuable literature using a pertinent database with given keywords like computer-aided drug design, antidiabetic, drug design, etc. We retrieved all valuable articles which are recent and discussing the role of computation in the designing of antidiabetic agents. Results: To facilitate the drug discovery process, the computational approach has set landmarks in the whole pipeline for drug discovery from target identification and mechanism of action to the identification of leads and drug candidates. Along with this, there is a determined endeavor to describe the significance of in-silico studies in predicting the absorption, distribution, metabolism, excretion, and toxicity profile. Thus, globally CADD is accepted with a variety of tools for studying QSAR, virtual screening, protein structure prediction, quantum chemistry, material design, physical and biological property prediction. Conclusion: Computer-assisted tools are used as the drug discovery tool in the area of different diseases, and here we reviewed the collaborative aspects of information technologies and chemoinformatics tools in the discovery of antidiabetic agents keeping in-view of the growing importance for treating diabetes.


2019 ◽  
Vol 9 (1) ◽  
pp. 84-92 ◽  
Author(s):  
Adib Ghaleb ◽  
Adnane Aouidate ◽  
Mohammed Bouachrine ◽  
Tahar Lakhlifi ◽  
Abdelouhid Sbai

Purpose: In this review, a set of aryl halides analogs were identified as potent checkpoint kinase1 (Chk1) inhibitors through a series of computer-aided drug design processes, to develop modelswith good predictive ability, highlight the important interactions between the ligand and theChk1 receptor protein and determine properties of the new proposed drugs as Chk1 inhibitorsagents.Methods: Three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling,molecular docking and absorption, distribution, metabolism, excretion and toxicity (ADMET)approaches are used to determine structure activity relationship and confirm the stableconformation on the receptor pocket.Results: The statistical analysis results of comparative -molecular field analysis (CoMFA) andcomparative molecular similarity indices analysis (CoMSIA) models that employed for a trainingset of 24 compounds gives reliable values of Q2 (0.70 and 0.94, respectively) and R2 (0.68 and0.96, respectively).Conclusion: Computer–aided drug design tools used to develop models that possess goodpredictive ability, and to determine the stability of the observed and predicted molecules in thereceptor pocket, also in silico of pharmacokinetic (ADMET) results shows good properties andbioavailability for these new proposed Chk1 inhibitors agents.


2021 ◽  
Author(s):  
Miao Yuan ◽  
Ping Cheng ◽  
Shuping Zhang

Computer-aided drug design technology was used to screen drugs in large-scale and to accelerate the progress of drug design of nonsteroidal compounds deriving from the hybridization of FDA-approved Enzalutamide and Abiraterone.


2017 ◽  
Vol II (I) ◽  
pp. 1-8
Author(s):  
Arif Paiman ◽  
Ahmad Mohammad ◽  
Mubashar Rehman

In modern day, Data on different diseases and drug substances with their properties like modification, side effects, and dose requires documentation data and building library exploring, such library with vast information in every aspect needs computational methods used in CADD. Recognition of specific targets for the drug tested and defining pharmacological activity of a drug candidate based on the structure of both drug and its target, finding outside effects of drugs at the molecular level and calculation of toxicity caused by metabolism of drug applications of Computer aided drug design in the drug discovery process. We can get additional tools and websites which serve As a tool for the source of data and computational drug design are available on the web interface and being used extensively by researchers and scientists to save time and budget for speeding up the process of experiments for Novel Drug compound.


Sign in / Sign up

Export Citation Format

Share Document